
1

A Survey of Advanced Interactive 3-D Graphics Techniques

Dieter Schmalstieg
Vienna University of Technology, Austria

email: dieter@cg.tuwien.ac.at - http://www.cg.tuwien.ac.at/dieter/

1. Motivation from human factors

Interactive 3-D Graphics are a new emerging field enabled by powerful and cost-effective computer
systems. The goal is to present a three-dimensional image of a scene stored in a computer to give a
human user the impression that he or she is looking at a virtual world. In producing such an illusion, we
would like to always be able to produce images that match or exceed the limits of human visual
perception in all aspects. Unfortunately, limitations in the performance of the image generators we
employ for this task defeat this goal. The ever-increasing demands of applications make it unlikely that
this situation will ever change significantly. Working solutions require us to trade off image fidelity for
graphical complexity and performance of the application. In doing so, it is vital to understand those
human factors that dominate the perception of interactive 3-D computer graphics [Helm93].

Visual acuity denotes the degree to which visible features can be perceived, and is commonly
measured as the angle subtended at the eye. On-axis resolution is around 1 arc minute; rendering
graphical features that fall below the threshold of perception would be wasteful, and the effort could be
used better elsewhere.

The human field of view is limited to about 180 degrees horizontally and 120 degrees vertically.
These are the biological constraints on the visible portion of the environment, which are usually further
restricted by display systems. Again, putting effort in displaying graphics outside the field of view is a
waste of performance.

Latency is the time measured from the setting of an input until the corresponding output is
manifested. Many factors contribute to latency: input devices, software architecture, rendering time,
display scan-out. For the rendering portion of the system, latency is typically taken as the time after the
eyepoint is set until the last pixel of the corresponding frame is scanned out by the display device.
Excessive latency can lead to over-compensation and control oscillations induced by the user.

A sufficiently high frame rate is necessary to fool the human eye into seeing a continuous and
smooth motion. Generally, most displays have refresh rates close to or above the flicker limit (60-80Hz)
of the human visual system, so the display itself introduces no significant problems. However, the time
it takes to generate an image by the image generator is bound to scene complexity. Low frame rates
make motion choppy and are especially problematic when rapid motion is possible as with a head-
mounted display. Furthermore, latency is increased since a low frame rate means a longer time until the
next image can be presented.

Constant frame rates are desirable as variations in frame rate tend to distract the user from the task
at hand. Variable frame rates also cause temporal inaccuracies because the change in frame rate affects
the latency. An unanticipated change in latency leads to a frame not being displayed at the time it was
planned for, and results in jerky motion.

2. The rendering pipeline

On most current image generators, rendering is implemented as a pipeline (see Figure 1) that usually
includes the following stages:

2

• Database traversal is typically done on the host CPU and can become a bottleneck if the traversal
is unable to keep the graphics pipeline full.

• Polygon processing includes vertex transformations, lighting calculations and 2-D triangle setup.
On very low end image generators, this stage is performed by the host CPU, but the trend goes
towards geometry processors that are specialized for this job.

• Pixel processing involves operations such as depth buffer testing, anti-aliasing, texturing, and alpha
blending. Most of these operations require access to memory, e.g. for looking up texture values,
which can have great impact on the performance. Pixel fill rates can also depend on the size of the
primitives being rendered because of the per-primitive setup effort.

Figure 1: The rendering pipeline

3. Performance of the rendering system

Maximizing frame rate and image quality becomes a problem of making the best use of the each
available stages and avoiding bottlenecks. The remainder of this chapter discusses methods and
techniques that aim to achieve optimal performance, and also take into account the relevant human
factors.

3.1 Reduction of geometric complexity

The usual measure for scene complexity is the number of geometric primitives of which the scene is
composed. As there is a hard limit on this number imposed by the hardware, any reduction of geometric
complexity is desirable. We are primarily interested in such simplifications that cannot be perceived by
the human user due to the biological limitations mentioned in section 1. If the simplification cannot be
concealed, there usually is a trade-off in image fidelity versus frame rate that has to be resolved. The
most important methods for reducing geometric complexity are visibility processing (section 4), levels
of detail (section 5), and the relatively new field of image based rendering (section 6).

3.2 Optimizing runtime rendering

Besides reducing the load on the rendering system, it is also necessary to ensure efficient use of the
available capacity. This involves tuning the geometric database to avoid suboptimal structures in the
data. Some of the measures are relatively simple: Many pipelined image generators are optimized for
triangle strips sharing adjacent triangles. Restructuring polygonal data in long strips helps to boost
performance. As switching graphics mode and graphical attributes (such as color or shading) involves a
performance penalty, the data should be presorted by type and mode if possible to avoid changes in the
state of the image generator. Transformations that are important for the modeling process can hurt
performance during rendering. Preprocessing allows all static transformation to be eliminated. Many

3

animations do not depend on run-time parameters, so they can be precomputed and simply replayed at
run-time, thus saving computation time.
Beyond these simple optimizations, there are performance issues that require more sophisticated
techniques, in particular latency management (section 7) and management of large geometric databases
(section 8).

4. Visibility processing

In the early days of raster graphics, a lot of attention has been paid to algorithms that resolve the
problem of visibility of opaque surfaces. With the invention of the z-buffer, a relative brute force
solution replaced all other methods in workstation-class image generators on the merit of its efficient
hardware implementation. However, the virtual environments we would like to render today are
composed of so many geometric primitives that resolving occlusion with the help of a z-buffer alone is
infeasible. We rather have to compute as accurately as possible those portions of the scene that are
actually visible, and let the hardware deal with this subset. Backface culling is a trivial example.

This task of visibility processing is carried out by the host CPU, and can be divided into two phases:
Visibility preprocessing is an off-line task that computes data that can later be used in the visibility
culling at run-time to quickly eliminate large portions of the scene that are certainly invisible.

The simplest way of visibility culling is culling on the viewing frustum. The problem here is to not let
the rendering/clipping process do the work, but rather to rapidly discard the portion of the scene that
lies outside the viewing frustum. A thoughtful spatial organization of the geometric primitives in the
scene is necessary, which is usually done by grouping spatially coherent primitives into objects.
Hierarchical bounding volumes can be used to sort out the invisible geometry. Naylor proposed to use a
binary space partitioning (BSP) tree for the scene that can be efficiently intersected with a viewing
frustum of any shape [Nayl95].

Virtual environments can broadly be categorized into sparse (i. e. most of the geometry within the
viewing frustum can at least partly be seen, up to the virtual horizon), and densely occluded (such as
building interiors where most of the geometry contained in the viewing frustum is hidden behind walls
and other large occluders).

Figure 2: Visibility culling of a building interior from [Funk92]. Left is the unpruned model, right
shows the portion visible from the observer

Airey [Aire90] first proposed to make use of the structure of densely occluded environments by
employing Potentially Visible Sets (PVS). The environment is decomposed into cells. The criterion for
the decomposition into cells is that the visible portion of the scene should be roughly the same from any
viewpoint within a cell. This is usually approximately equivalent to the rooms of a building that are
interconnected only by doors, windows, stairs, and hallways. Any such opening is referred to as a
portal. The method precomputes a subdivision into cells, builds the cell adjacency graph, and associates
with each cell a PVS, which is a conservative overestimate of the actual visible portion that can be
efficiently computed. The geometry associated with the PVS is then rendered, and a standard z-buffer is
used to resolve exact visibility. Airey used a shadow volume BSP buffer to estimate the PVS. Teller
and Sequin [Tell91] have taken this concept further and found an analytic solution to the portal-portal

4

visibility problem. Using linear programming, they compute a complete set of cell-to-cell and cell-to-
object visibilities (compare Figure 2). This approach is computationally intensive.

Therefore Luebke and Georges [Lueb95] propose a variant that works without visibility
preprocessing: At runtime, they compute 2-D bounding boxes of the portals projected to screen space.
During the traversal of the cell adjacency graph, as each successive portal is traversed, its bounding box
is intersected with the aggregate culling box using only a few min-max comparisons. The content of
each cell is tested for visibility through the current portal sequence by comparing the screen-space
projection of each object’s bounding box.

Greene, Kass & Miller [Gree93] developed an algorithm called hierarchical z-buffer visibility that
works well not only for densely occluded environments, but also for environments that have open
spaces. The algorithm uses an octree in object space. The scene is rendered by recursively traversing
the octree front to back. Before the geometry associated with a particular node in the octree is rendered,
its visibility is estimated by testing the cube associated with the octree node for visibility. This test is
further accelerated by a z-pyramid maintained in image space. Using the octree and the z-pyramid as
auxiliary data structures, the algorithm is able to exploit simultaneously object space and image space
coherence, and temporal coherence for animated walkthroughs as well. However, today’s hardware
does not fully support the features required by the algorithm, and it has to rely on software rendering.

Coorg and Teller [Coor96] present a spatially and temporally coherent visibility algorithm that
exploits properties of the scene by distinguishing large occluders from occludees. The algorithm works
entirely in object space, using fast conservative visibility tests. It uses an octree-based subdivision, and
eliminates large portions of the model without touching most invisible polygons.

Another class of visibility algorithms deals with the reduced problem of 2 ½ D visibility, that is
representative for all environments where the user’s movement is constrained to a plane (such as
walking on a single floor of a building). Yagel and Ray [Yage96] present a visibility algorithm for cells
based on a regular grid subdivision in 2-D. They classify the cells (grid elements) as open, occluded, or
containing a wall, and compute approximated eye-to-cell visibility. Schmalstieg and Tobler [Schm97a]
developed an algorithm that is based on a 2-D triangular mesh. The edges of the triangles can be
elevated and interpreted as walls. They propose a recursive algorithm that can be rapidly executed at
run-time and exploits spatial coherence by yielding not only the PVS but also exact visible portions of
the walls. This algorithm lends itself especially for low-end platforms that do not have 3-D hardware
acceleration.
Visibility computation is generally restricted to walkthroughs of static environments, because they
include a heavy preprocessing stage that constructs an auxiliary spatial data structure. Sudarsky and
Gotsman [Suda96] make a fist attempt to include dynamically moving objects by introducing temporal
bounding volumes that can be used for incremental updates of the spatial data structure.

5. Levels of detail

In very large virtual environments it is commonly the case that many objects are very small or distant.
The size of many geometric features of these objects falls below the perception threshold or is smaller
than a pixel on the screen. To better use the effort put into rendering such features, an object should be
represented at multiple levels of detail (LODs). Simpler representation of an object can be used to
improve the frame rates and memory utilization during interactive rendering.

Figure 3: Three levels of detail for a Romulan warbird

This technique was first described by Clark already in 1976 [Clar76], and has been an active area of
research ever since. The important questions for the application of levels of detail are: What strategy to

5

use for selecting an appropriate level of detail for each object? How to best stage the transition between
two successive levels of detail? And how to create good levels of detail for an original high-fidelity
geometric object?

5.1 Level of detail selection

There is no unique way to characterize the best selection of levels of detail for a group of objects
comprising a scene, since human perception and aesthetics are hard to catch in a single formula.
Instead, heuristics are used. Simple heuristics use the distance of the object from the observer or the
size projected to the screen as a measure for the LOD. Unfortunately, these static heuristics do not
adapt to variable load on the graphics pipeline: If too many complex objects are close to the observer,
an overload can neither be detected nor avoided, and if rendering load is low, the image generator may
be idle. Therefore, reactive level of detail selection is employed by flight simulators and real-time
rendering toolkits such as Performer [Rohl94] with adaptive level of detail selection according to the
time required by the last frames. However, such a strategy still fails to guarantee bounded frame rates,
since sudden changes in the rendering load can be underestimated. Funkhouser and Sequin attacked this
problem with a predictive selection algorithm [Funk93] formulated as a cost/benefit optimization
problem: What selection of levels of detail for each objects produces the best image while the
accumulated cost for rendering each objects stays below the maximum capacity of the image generator
at the desired frame rate? They use a cost heuristic based on the polygon and pixel capacity of the
image generator, and a benefit heuristic constructed as a weighted average of factors such as the
object’s size, accuracy, and importance. The optimization problem is a variant of the well-known
knapsack problem and can be incrementally and approximately solved with tractable computation effort
for every frame.

5.2 Level of detail switching

For the use of levels of details, one may not neglect the issue how to stage the transition between two
successive representations. The simplest way to do the transition is hard switching: At some point, the
simpler model replaces the more complex model. This meets the performance goal, but can cause visual
popping which may be disturbing. Instead of simply switching the models, for a short transition period
they can be drawn blended together. This substantially reduces the popping effect, but temporarily
increases the rendering load while both models are being drawn. Yet superior to blending is geometric
morphing of one object into another. While this approach has certainly the best visual and performance
effect, it works only for levels of detail with well-defined geometric correspondences.

5.3 Level of detail generation

The principal challenge of level of detail generation is to develop a way that takes a detailed model as
input and automatically simplifies its geometry, while preserving appearance as good as possible. While
in principle level of detail generation is relevant for complex models composed of any type of
geometric primitive, in practice almost exclusively polygonal models are used [Deer93], so research has
focused on this class.

Certain aspects are important in the classification of an algorithm that performs the task of polygonal
simplification:

• Local vs. global: Local techniques operate on individual primitives such as vertices, adjacent edge
segments or use some polygon characteristics. They are more apt to fulfill requirements related to
small features such as a local preservation of shape. Global techniques attempt to optimize the
polygon mesh based upon more general, high-level features of the model.

• Error bounds: Some of the methods guarantee user-controlled error bounds on the quality of the
simplified objects according to some metric (such as the maximum distance between the surface of
the original and the simplified model).

Besides these fundamental consideration, level of detail generation algorithms can be distinguished by
algorithmic principles:

Mesh simplification algorithms work with polygonal meshes, often triangle meshes. Local operations
on the surface of the object are performed, with a stress on the preservation of important visual features
such as shape and topology. As an input, these algorithms expect topologically sound, manifold meshes.

6

Unfortunately, this criterion is often not met by models generated with CAD packages, which leads to
all sorts of practical problems. These algorithm also put more weight on feature preservation, for
example, the simplification ratio is bound by the requirement of not reducing the genus of the object.
The best results are achieved for smooth, organic objects that are over-tessellated, such as models
obtained from a 3-D scanner.

The decimation algorithm by Schroeder, Zarge & Lorensen [Schr92] analyses the vertices of the
original model for possible removal based upon a distance criterion. A local re-triangulation scheme is
then used to fill the hole resulting from the removed vertex.

Turk’s re-tiling method [Turk92] optimizes a triangle mesh by introducing new vertices to form a new
representation. The new vertices are uniformly distributed on the surface of the original object. The
original vertices are then iteratively removed, and the surface is locally re-triangulated to best match the
local connectivity of the surface.

Hoppe et al. [Hopp93] present a triangular mesh simplification process which was based upon their
surface reconstruction work. This technique introduced the concept of an energy function to model the
opposing factors of polygon reduction and similarity to the original geometry. The energy function,
used to provide a measure of the deviation between the original and the simplified mesh, is minimized
to find an optimal distribution of vertices for any particular instantiation of the energy function.

Vertex clustering algorithms ignore topology in both input and output data. As a result, the algorithms
perform robustly for degenerate input data, and can achieve arbitrary high compression for any kind of
geometry. On the downside, the generated artifacts are much more severe, and local features are not
preserved so well.

The fundamental idea of vertex clustering is to reduce the number of vertices of a polygonal model
(usually a triangle mesh). Due to perspective distortion individual vertices of an object move closer
together on the screen as the distance to the observer increases until they finally fall into one pixel. By
creating a cluster of such close vertices and replacing all cluster members by a representative vertex, the
number of vertices is reduced. The set of triangles is modified to include only the vertices in the new
set. In the course of that process, triangles will degenerate to lines or points and can be removed.
Therefore the set of triangles is reduced as well, and any such intermediate data set can be used as an
individual LOD.

Several selection criteria have been presented to choose the vertices that are to be clustered.
Rossignac and Borrel [Ross93] propose a simple, yet efficient uniform quantization in 3-D. Schaufler
and Stürzlinger [Scha95] use a hierarchical clustering method. [Schm97c] proposes a method for the
VRML standard, based on octree quantization.

Reconstruction algorithms do not try to simplify the original object, but rather aim to build a new
object from scratch that is gradually refined to better approximate the original object.

DeHaemer and Zyda [DeHa91] combine two approaches for approximation of quadrilateral meshes
topologically equivalent to regular grids. One approach tries to fit polygons to the original mesh by
recursively subdividing them. The other approach starts with a polygon of the original mesh and tries to
grow it by merging it with its neighbors until a fitting threshold is exceeded.

He et al. [He95] propose to sample and low-pass filter the object into multi-resolution volume buffers
and apply the marching cubes algorithm to obtain a triangular mesh. This method is very robust and has
the advantage that it can also deal with non-polygonal (e.g. CSG) input models. However, the resulting
meshes are still over-triangulated as a result of the marching cubes algorithm.

Progressive representations take the idea of reconstruction algorithms a step further by representing
the original object by a series of approximations that allow a near-continuous reconstruction and can be
encoded incrementally in a very compact way.

Lounsbery et al. [Loun93] use wavelets to polygonal objects a multi-resolution data set of wavelet
coefficients obtained from a triangular mesh with subdivision connectivity. Levels of detail can easily
be constructed by omitting higher order detail coefficients in the reconstruction process. [Eck95]
presents a method to transform an arbitrary mesh into an equivalent one with the required subdivision
connectivity. This work is taken further in [Cert96] to include colored meshes and support progressive
reconstruction of the model.

7

The progressive meshes introduced by Hoppe [Hopp96], based on edge collapse operation, yields a
lossless, continuous-resolution representation for triangular meshes. The representation is generated as
a sequence of repeated edge collapses, and is simply inverted in the progressive reconstruction process.
The order of applied operation is determined by adopting the mesh simplification method from
[Hopp93]. A similar approach that is also based on edge collapse operations is presented in [Ronf96].

Schmalstieg and Schaufler present a progressive geometry data structure called smooth levels of detail
[Schm97b]. It is derived from a vertex cluster tree and also offers significant compression.

5.4 Terrain

A specialized problem worth discussing is the representation and simplification of terrain. Digital
terrain is generally represented using an elevation model or height field of sample points, effectively a
two-dimensional discrete function. Often the sample points are arranged in a regular grid. Such data is
easily obtained from sources such as satellite range images and exhibits excessive detail. For speedy
rendering, a triangulation of the sample points with a low polygon count must be obtained. Such
triangulation schemes can roughly be categorized into regular subdivisions and triangular irregular
network (TIN) models. For a survey, see [DeFl96]. Interactive rendering is best achieved by using
multi-resolution subdivisions, so that levels of detail can be selected at run-time individually for
different regions of the terrain. [Falb93] outlines how real-time management of multi-level terrain data
can be achieved. Recent work by Lindstrom et al. [Lind96] proposes a scheme for computing
continuous levels of detail for a regular subdivision height field that can be computed incrementally at
run-time and supports a user specified error threshold.

6. Image based rendering

The relatively new field of image based rendering tries to take advantage of the observation that while
the complexity of geometry in a scene is potentially unbound, the complexity of images (of a given
resolution) is finite and can easily be estimated in advance for guaranteed rendering performance.
Display algorithms typically require modest computational effort and are apt for low-cost and
entertainment devices. Furthermore, the source of images can be computer models or digitized
photographs, with the option of mixing the two together.

The most established technique that falls in that area is texture mapping, which simulates detail by
mapping images (often defined using bitmaps) onto flat surfaces. Partially transparent textures can be
used to simulate geometry with complex outlines. The widely available hardware-support makes texture
mapping the most popular choice for visually rich virtual environments. However, the disadvantage of
artifacts stemming in the finite resolution of texture maps cannot fully be overcome by sampling
strategies such as mip-mapping [Fole90]. Texture mapping is complemented by environment mapping,
to capture the light entering a scene from outside in a special texture map, a technique which is also
available in hardware now.

A relative straight extension of texture mapping for the purposes of virtual environments are
billboards [Rohl94]. Radially or spherically symmetric objects such as trees can be approximated by a
single texture-mapped polygon, which is always oriented to face the observer.

Maciel and Shirley [Maci95] introduced the concept of an imposter: An image of an object in the
approximate direction of the observer is presented in place of the object itself by rendering it as a
texture map onto single polygon. Schaufler extended this concept to the dynamic generation of
impostors at run-time [Schau96a], rather than as a preprocessing step: The imposter is generated by
finding a screen-aligned rectangle surrounding the object and rendering the object into a corresponding
rectangular frame buffer using graphics hardware. The resulting image is read from this buffer and used
to define the texture on the imposter rectangle.
Subsequently, Schaufler and Stürzlinger [Scha96c] and Shade et al. [Shad96] concurrently developed a
hierarchical image cache that uses the concept of imposters to accelerate the rendering of very large
polygonal scenes up to an order of magnitude: The scene is decomposed into cells by a hierarchical
spatial data structure such as an octree or a BSP tree. This data structure is traversed depending on the
projected size of the cells, and a cache of impostors for each node is created and updated as required by
an error metric on the validity of the imposter.

8

The first proposal to build hardware that supports this idea is Talisman [Torb96]. Aimed at the low-
end image generator market, this architecture discards the concept of a frame buffer in favor of small
image layers that at are composed on the fly at full rendering speed. During the composition process, a
full affine transformation is applied to the layers to allow translation, rotation and scaling to simulate 3-
D motion. Temporal image coherence is exploiting by re-using the image layers in a way similar to
imposters.

Image based rendering for rendering polygonal scenes as outlined above are probably the most
sophisticated acceleration tools suitable for the class of scenes categorized as sparse earlier. Beyond
polygonal scenes, some work has been recently developed that attempts purely image based rendering,
so that the notion of geometric complexity is completely abandoned.

Chen and Williams [Chen93] proposed to synthesize a dynamic view of the environment from a set of
environment maps that are composed by image warps. Regan and Post [Rega94] developed a hardware
featuring multiple frame buffers that are combined by evaluating depth values. Re-rendering of objects
can be delayed until the an object’s view becomes too erroneous.

Quicktime VR [Chen95] is an attempt to use cylindrical or spherical image maps that are warped in
real time to simulate camera panning and zooming. The method works very efficiently on low-
performance platforms and is now successfully used in entertainment products.

A new approach to model the appearance of objects without the use of explicit geometry was
simultaneously introduced by Levoy and Hanrahan [Levo96] as the light field and Gortler et al.
[Gort96] as the lumigraph. The object’s appearance is represented a 4-D function, which is a subset of
the plenoptic function describing the flow of light from all directions in all directions. This function is
sampled to synthesize an image from any given viewpoint.

7. Managing latency

All effort to reduce rendering complexity to fit the maximum capacity of the image generator at the
target frame rate can easily be defeated by a suboptimal utilization of the hardware. In particular, the
rendering process is constantly facing deadlines in the form of refresh cycles for the display device. If
the rendering is not completed before the scan-out of the new frame starts, a whole frame’s time is lost,
so it is essential to complete rendering timely in order to keep the graphics system occupied.

One way to achieve this is to make use of both host CPU and graphics processor. A typical setup of
the pipeline for the CPU includes an application task (simulation, modification of the scene graph), a
database task (scene graph traversal, visibility culling, level of detail selection) and a draw task
(transferring data to the graphics subsystem). As with any pipeline, these task should take even time
slices to achieve a maximum utilization, and should furthermore be tuned to meet the refresh cycle
deadlines. This goal can be defeated by dynamic shifts in the load of individual stages. However, if any
stage always picks up the latest available instance of the pipelines data, the pipeline is at least kept from
stalling.

One limiting factor in this setup are the fixed time slices enforced by the refresh cycle of the display.
This factor was criticized by Bishop et al. in [Bish94]. They proposed frameless rendering, where
individual random pixel are updated rather than frames, and always use the latest viewpoint
information, which is particularly suitable for immersive systems employing head-tracking. However,
current image generators do not support this approach. Mazuryk, Schmalstieg and Gervautz [Mazu97]
proposed a simple scheme that trades traditional double buffering in favor of a copy/zoom operation
supported by 2-D bit block transfer hardware, which is a standard component of today’s image
generators. New frames can be presented independently of the refresh cycle, and the zoom operation
can be used to compensate pixel-dominated rendering overload for low-cost image generators. This
approach can be combined with 2-D image deflection to reduce dynamic viewing errors in head-tracked
displays. This approach was further refined by Schaufler, Mazuryk and Schmalstieg in [Scha96b] by
replacing 2-D image deflection with the more capable 3-D image deflection on the basis of dynamic
imposters.

9

8. Managing large geometric databases

For very large scenes, interactive rendering also involves a number of issues in database management,
for the sheer size of the involved data sets. Conservative use of main memory can enable handling of
larger geometric databases. While memory is gradually moving away from being the most limiting
factor in large-scale applications, this constraint is readily replaced by the limited bandwidth of network
connections such as the Internet, that are essential in distributed virtual environments. Slow network
transmission of large geometric data sets interferes with the responsiveness requirements of interactive
3-D applications.

An important aspect is the paging if geometry and texture from the secondary storage into memory.
An implementation should take care of:

• Achieving full I/O bandwidth by arranging the data so it can be fetched from the secondary storage
in large chunks rather than small items.

• Minimizing impact on frame rate by either dividing the I/O task over multiple frames, or running it
as an asynchronous process that does not interfere with the main rendering task.

• Accurate prediction and timing to avoid situations where the required data is unavailable, and
rendering must be stalled.

Funkhouser, Sequin and Teller [Funk92] present an application capable of presenting an interactive
walkthrough of a database much larger than memory. The data is pre-loaded by predicting the users
movements and reducing the required data based on visibility considerations for building interiors.

For networks, progressive level of detail representations as discussed above allow to make instant use
of partially transmitted data. A related topic is geometry compression: Data sets can be transmitted in a
compressed form, then expanded at the receiver for more rapid rendering. The first step in this direction
was made by Deering [Deer95], who proposed a compression scheme for triangular meshes based on
generalized triangle strips, including normals and colors. Taubin and Rossignac [Taub96] introduce a
procedure they call topological surgery, which transforms a triangular mesh into an alternate
representation based on spanning trees for triangle strips and vertices, that can be encoded in an
extremely compact form and yields high compression rates. Levoy [Levo95] proposed to combine
JPEG compression of animated sequences with simple polygonal rendering data to yield higher
compression ratios for digital movies.

9. Summary

Interactive 3-D graphics is a rapidly evolving field inside computer graphics. While traditionally,
computer graphics has focused on the quality of images alone, the real-time requirements of interactive
applications make it necessary to employ all sorts of trade-offs to maintain frame rates and satisfy
ergonomic needs. Techniques such as visibility processing, levels of detail, image based rendering, and
the management of latency and large geometric databases make it necessary to adopt methods not only
from computer graphics, but also from real-time systems, databases, networking and many other
domains. Despite the many shortcomings that current implementations have, the importance of
interactive 3-D graphics is certain to grow at an enormous pace.

References
[Aire90] J. M. Airey, J. H. Rohlf, F. Brooks Jr.: Towards Image Realism with Interactive

Update Rates in Complex Virtual Building Enviroments. Computer Graphics, Vol.
24, No. 2, pp. 41 (1990)

[Bish94] G. Bishop, H. Fuchs et al.: Frameless Rendering: Double Buffering Considering
Harmful. Proceedings of SIGGRAPH’94, pp. 175-176 (1994)

[Cert96] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, W. Stuerzle:
Interactive Multiresolution Surface Viewing. Proceedings of SIGGRAPH’96, pp.
91-98 (1996)

[Chen93] S. Chen, L. Williams: View interpolation for Image Synthesis. Computer Graphics
(Proceedings SIGGRAPH), pp. 279-288 (1993)

[Chen95] S. Chen: Quick Time VR - An Image-Based Approach to Virtual Environment
Navigation. Computer Graphics (Proceedings SIGGRAPH), pp. 29-38 (1995)

10

[Clar76] J. Clark: Hierarchical Geometric Models for Visible Surface Algorithms.
Communications of the ACM, Vol. 19, No. 10, pp. 547-554 (1976)

[Coor96] S. Coorg, S. Teller: A Spatially and Temporally Coherent Object Space Visibility
Algorithm. Tech. Report TM-546, Laboratory for Computer Science, MIT (1996)

[Deer95] M. Deering: Geometry Compression. Computer Graphics (Proceedings
SIGGRAPH), pp. 13-20 (1995)

[DeFl96] L. De Floriani, P. Marzano, E. Puppo: Multiresolution models for topological
surface description. Visual Computer, Vol. 12, pp. 317-345 (1996)

[DeHa91] M. DeHaemer, M. Zyda: Simplification of Objects Rendered by Polygonal
Approximations. Computers & Graphics, Vol. 15, No. 2, pp. 175-184 (1991)

[Eck95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle:
Multiresolution Analysis of Arbitrary Meshes. Computer Graphics (Proceedings
SIGGRAPH), pp. 173-182 (1995)

[Falb93] J. Falby, M. Zyda, D. Pratt, L. Mackey: NPSNET: Hierarchical data structures for
realtime 3-dimensional visual simulation. Computers & Graphics, Vol. 17, No. 1,
pp. 65 (1993)

[Fole90] J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer Graphics: Principles and
Practice. Addison-Wesley Publishing Co., ISBN 0-201-12110-7 (1990)

[Funk92] T. Funkhouser, C. Sequin, S. Teller: Management of Large Amounts of Data in
Interactive Building Walkthroughs. SIGGRAPH Symposium on Interactive 3D
Graphics, pp. 11-20 (1992)

[Funk93] T. Funkhouser, C. Sequin: Adaptive Display Algorithm for Interactive Frame
Rates During Visualisation of Complex Virtual Environments. Computer Graphics
(Proceedings SIGGRAPH), pp. 247-254 (1993)

[Gort96] S. Gortler, R. Grzeszczuk: The Lumigraph. Computer Graphics (Proceedings
SIGGRAPH), pp. 43-54 (1996)

[He95] T. He, L. Hong, A. Kaufman, A. Varshney, S. Wang: Voxel Based Object
Simplification. Proc. SIGGRAPH Symposium on Interactive 3D Graphics, pp.
296-303 (195)

[Helm93] J. L. Helman: Designing VR Systems to Meet Psysio- and Psychological
Requirements, SIGGRAPH Course Notes, No. 23 (1993)

[Hopp93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle: Mesh
Optimization. Computer Graphics (Proceedings SIGGRAPH), pp. 19-26 (1993)

[Hopp96] H. Hoppe: Progressive meshes. Proceedings of SIGGRAPH ‘96, pp. 99-108
(1996)

[Levo95] M. Levoy: Polygon-Assisted JPEG and MPEG Compression of Synthetic Images.
Computer Graphics (Proceedings SIGGRAPH), pp. 21-25 (1995)

[Levo96] M. Levoy, P. Hanrahan: Light Field Rendering. Computer Graphics (Proceedings
SIGGRAPH), pp. 31-42 (1996)

[Lind96] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, G. Turner: Real-Time
Continuous Level of Detail Rendering of Height Fields. Computer Graphics
(Proceedings SIGGRAPH), pp. 109-118 (1996)

[Loun93] M. Lounsbery, T. DeRose, J. Warren: Multiresolution analysis for surfaces of
arbitrary topological type. Technical Report, 93-10-05b, Dept. of Comp. Sci.,
Univ. of Washington (1994)

[Lueb95] D. Luebke, C. Georges: Portals and Mirrors: Simple, Fast Evaluation of
Potentially Visible Sets. Proceedings SIGGRAPH Symposium on Interactive 3D
Graphics, pp. 105-106 (1995)

[Maci95] P. Maciel, P. Shirley: Visual Navigation of Large Environments Using Textured
Clusters. SIGGRAPH Symposium on Interactive 3-D Graphics, pp. 95-102 (1995)

[Mazu97] T. Mazuryk, D. Schmalstieg, M. Gervautz: Zoom Rendering: Improving 3-D
Rendering To appear in: The International Journal of Virtual Reality. (1997)

[Nayl95] B. Naylor: Interactive playing with large synthetic environments. SIGGRAPH

11

Symposium on Interactive 3D Graphics (1995)

[Rega94] M. Regan, R. Pose: Priority Rendering with a Virtual Reality Address
Recalculation Pipe. Proceedings of SIGGRAPH’94, pp. 155-162 (1994)

[Rohl94] J. Rohlf, J. Helman: IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics. Proceedings of SIGGRAPH’94, pp. 381
(1994)

[Ronf96] R. Ronfard, J. Rossignac: Full-range Approximation of Triangulated Polyhedra.
Proceedings of EUROGRAPHICS'96, pp. 67-76 (1996)

[Ross93] Jarek Rossignac, Paul Borrel: Multi-Resolution 3D Approximation for Rendering
Complex Scenes. IFIP TC 5.WG 5.10 II Conference on Geometric Modeling in
Computer Graphics (1993)

[Scha95] G. Schaufler, W. Stürzlinger: Generating Multiple Levels of Detail from
Polygonal Geometry Models. Virtual Environments’95 (ed. M. Göbel), Springer
Wien-New York (1995)

[Scha96a] G. Schaufler: Integrating impostors into a level of detail algorithm. Proceedings of
Virtual Reality Annual International Symposium (VRAIS’96) (1996)

[Scha96b] G. Schaufler, T. Mazuryk, D. Schmalstieg: High Fidelity for Immersive Displays.
Short paper, ACM SIGCHI’96 conference companion. Also technical report TR-
186-2-96-02, Vienna University of Technology, Austria (1996)

[Scha96c] G. Schaufler, W. Stürzlinger: A Three-Dimensional Image Cache for Virtual
Reality. Proceedings of EUROGRAPHICS’96 (1996)

[Schm97a] D. Schmalstieg, R. Tobler: Exploiting Coherence in 2 1/2 D Visibility
Computation. Computers & Graphics, Vol. 21, No. 1 (1997)

[Schm97b] D. Schmalstieg, G. Schaufler: Smooth Levels of Detail. Proceedings of the Virtual
Reality Annual International Symposium (VRAIS’97), pp. 12-19, Monterey CA
(1997).

[Schm97c] D. Schmalstieg: An Octree-Based Level of Detail Generator for VRML.
Proceedings of the ACM SIGGRAPH 1997 Symposium on VRML (VRML’97),
pp. 127-133, Monterey CA, Feb 24-27 (1997)

[Schr92] W. Schroeder, J. Zarge, W. Lorensen: Decimation of Triangle Meshes.
Proceedings of SIGGRAPH’92, pp. 65-70 (1992)

[Shad96] J. Shade, D. Lischinski, D. Salesin, T. DeRose, J. Snyder: Hierarchical Image
Caching for Accelerated Walkthruoghs of Complex Environments. Computer
Graphics (Proceedings SIGGRAPH), pp. 75-82 (1996)

[Suda96] O. Sudarsky, C. Gotsman: Output-Sensitive Visibility Algorithms for Dynamic
Scenes with Applications to Virtual Reality. Proceedings of
EUROGRAPHICS'96, pp. 249-258 (1996)

[Taub96] G. Taubin, J. Rossignac: Geometric Compression Through Topological Surgery.
Technical Report RC-10340, IBM T. J. Watson Research Center (1996)

[Tell91] S. Teller, C. Séquin: Visibility Preprocessing For Interactive Walktroughs.
Computer Graphics (Proceedings SIGGRAPH), Vol. 25, No. 4, pp. 61-69 (1991)

[Torb96] J. Torborg, J. Kajiya: Talisman: Commodity Realtime 3D Graphics for the PC.
Computer Graphics (Proceedings SIGGRAPH), pp. 353-364 (1996)

[Turk92] G. Turk: Re-Tiling Polygon Surfaces. Computer Graphics (Proceedings
SIGGRAPH), pp. 55-64 (1992)

[Yage95] Yagel R., Ray W.: Visibility Computation for Efficient Walkthrough of Complex
Environments. Presence, Vol. 5, No. 1, pp. 45-60 (1995)

