

Feature Selection based on statistical Hypothesis Testing > The Goal: For each individual feature, find whether the values, which the feature takes for the different classes, differ significantly. That is, answer • $H_1: \theta_1 \neq \theta_0$: The values differ significantly • $H_0: \theta_1 = \theta_0$: The values do not differ significantly If they do not differ significantly reject feature from subsequent stages. Hypothesis Testing Basics

5

> Central limit theorem under H_0 $p_{\overline{x}}(\overline{x}) = \frac{\sqrt{N}}{\sqrt{2\pi\sigma}} \exp\left(-\frac{N(\overline{x} - \hat{\mu})^2}{2\sigma^2}\right)$ > Thus, under H_0 $p_q(q) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{q^2}{2}\right) \quad q \approx N(0,1)$ 10

This is no longer Gaussian. If x is Gaussian, then q follows a t-distribution, with N-1 degrees of freedom	> Table Degrees of Freedom	e of acco	eptance inte	ervals for to	-distribution 0.975	0.99
	12		1.78	2.18	2.56	3.05
	13		1.77	2.16	2.53	3.01
> An example:	14		1.76	2.15	2.51	2.98
r is Gaussian $N = 16$ obtained from measurements	15		1.75	2.13	2.49	2.95
	 16		1.75	2.12	2.47	2.92
$x = 1.35$ and $\hat{\sigma}^2 = (0.23)^2$. Test the hypothesis	17		1.74	2.11	2.46	2.90
$H_0: \mu = \hat{\mu} = 1.4$	18	2.17	1.73	2.10	2.44	2.88
at the significance level $\rho = 0.025$.	> Pr 1.: Tl	$\cosh\left\{-2.4$ $207 < \hat{\mu} + \hat{\mu} + \hat{\mu}\right\}$ $\sin(\hat{\mu}) = 1$	$49 < \frac{\bar{x} - \hat{\mu}}{\hat{\sigma}/4} <$ < 1.493 1.4 is accepted	2.49}		16

- > The goal here is to test against zero the difference μ_1 - μ_2 of the respective means in ω_1 , ω_2 of a single feature.
- > Let $x_i i=1,...,N$, the values of a feature in ω_1
- \succ Let $y_i \mathrel{i=1,...,N}$, the values of the same feature in ω_2
- > Assume in both classes $\sigma_1^2 = \sigma_2^2 = \sigma^2$ (unknown or not)
- > The test becomes $H_0: \Delta \mu = \mu_1 - \mu_2 = 0$ $H_1: \Delta \mu \neq 0$

> Define z=x-y> Obviously $E[z]=\mu_{1}\mu_{2}$ > Define the average $\overline{z} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - y_{i}) = \overline{x} - \overline{y}$ > Known Variance Case: Define $q = \frac{(\overline{x} - \overline{y}) - (\hat{\mu}_{1} - \hat{\mu}_{2})}{\sigma\sqrt{\frac{2}{N}}}$ > This is N(0,1) and one follows the procedure as before.

$$\begin{array}{l} \label{eq:constraint} \forall \text{Unknown Variance Case:} \\ \text{Define the test statistic} \\ q = \frac{(\overline{x} - \overline{y}) - (\mu_{1} - \mu_{2})}{S_{z}\sqrt{\frac{2}{N}}} \\ \\ s_{z}\sqrt{\frac{2}{N}} \\ \hline \\ S_{z}^{2} = \frac{1}{2N-2}(\sum_{i=1}^{N}(x_{i} - \overline{x})^{2} + \sum_{i=1}^{N}(y_{i} - \overline{y})^{2}) \\ \\ \cdot q \text{ is t-distribution with } 2N-2 \text{ degrees of freedom,} \\ \\ \cdot \text{ Then apply appropriate tables as before.} \\ \\ \hline \\ \textbf{Example: The values of a feature in two classes are:} \\ \omega_{1}: 3.5, 3.7, 3.9, 4.1, 3.4, 3.5, 4.1, 3.8, 3.6, 3.7 \\ \omega_{2}: 3.2, 3.6, 3.1, 3.4, 3.0, 3.4, 2.8, 3.1, 3.3, 3.6 \\ \\ \hline \\ \text{Test if the mean values in the two classes differ significantly, at the significance level $\rho = 0.05 \\ \end{array}$$$

Combine remaining features to search for the "best" combination. To this end:

- Use different feature combinations to form the feature vector. Train the classifier, and choose the combination resulting in the best classifier performance.
- A major disadvantage of this approach is the high complexity. Also, local minima, may give misleading results.
- Adopt a class separability measure and choose the best feature combination against this cost.

22

> Class separability measures: Let
$$\underline{x}$$
 be the current feature
combination vector.
• Divergence. To see the rationale behind this cost, consider
the two – class case. Obviously, if on the average the
value of $\ln \frac{p(\underline{x} | \omega_1)}{p(\underline{x} | \omega_2)}$ is close to zero, then \underline{x} should be a
poor feature combination. Define:

$$- D_{12} = \int_{-\infty}^{+\infty} p(\underline{x} | \omega_1) \ln \frac{p(\underline{x} | \omega_1)}{p(\underline{x} | \omega_2)} d\underline{x}$$

$$- D_{21} = \int_{-\infty}^{+\infty} p(\underline{x} | \omega_2) \ln \frac{p(\underline{x} | \omega_2)}{p(\underline{x} | \omega_1)} d\underline{x}$$

$$- d_{12} = D_{12} + D_{21}$$

$$d_{12}$$
 is known as the divergence and can be used as a
class separability measure.

- For the multi-class case, define d_{ij} for every pair of classes $\omega_r \omega_j$ and the average divergence is defined as $d = \sum_{i=1}^{M} \sum_{j=1}^{M} P(\omega_i) P(\omega_j) d_{ij}$ - Some properties: $d_{ij} \ge 0$ $d_{ij} = 0, \text{ if } i = j$ $d_{ij} = d_{ji}$ - Large values of d are indicative of good feature combination.

• Between-class scatter matrix

$$\begin{split} & S_b = \sum_{i=1}^M P_i (\underline{\mu}_i - \underline{\mu}_0) (\underline{\mu}_i - \underline{\mu}_0)^T \\ & \underline{\mu}_0 = \sum_{i=1}^M P_i \underline{\mu}_i \\ & \text{Trace } \{S_b\} \text{ is a measure of the average distance of the mean of each class from the respective global one.} \\ \text{• Mixture scatter matrix} \\ & S_m = E[(\underline{x} - \underline{\mu}_0) (\underline{x} - \underline{\mu}_0)^T] \\ & \text{It turns out that:} \\ & S_m = S_w + S_b \end{split}$$

> Measures based on Scatter Matrices.
•
$$J_1 = \frac{\text{Trace}\{S_m\}}{\text{Trace}\{S_w\}}$$

• $J_2 = \frac{|S_m|}{|S_w|} = |S_w^{-1}S_m|$
• $J_3 = \text{Trace}\{S_w^{-1}S_m\}$
• Other criteria are also possible, by using various combinations of S_m , S_b , S_w .
The above J_1 , J_2 , J_3 criteria take high values for the cases where:
• Data are clustered together within each class.
• The means of the various classes are far. 27

Besides suboptimal techniques, some optimal searching techniques can also be used, provided that the optimizing cost has certain properties, e.g., monotonic. Instead of using a class separability measure (filter techniques) or using directly the classifier (wrapper techniques), one can modify the cost function of the classifier appropriately, so that to perform feature selection and classifier design in a single step (embedded) method. For the choice of the separability measure a multiplicity of costs have been proposed, including information theoretic

34

Optimal Feature Generation

In general, feature generation is a problem-dependent task. However, there are a few general directions common in a number of applications. We focus on three such alternatives.
 > Optimized features based on Scatter matrices (Fisher's linear discrimination).
 The goal: Given an original set of *m* measurements <u>x</u> ∈ ℜ^m, compute <u>y</u> ∈ ℜ^t, by the linear transformation <u>y</u> = A^T <u>x</u>
 so that the J₃ scattering matrix criterion involving S_w, S_b is maximized. A^T is an ℓxm matrix.

- Let
$$C=AB$$
 an $mx\ell$ matrix. If A maximizes $J_3(A)$ then
 $\left(S_{xw}^{-1}S_{xw}\right)C = CD$
The above is an eigenvalue-eigenvector problem.
For an M -class problem, $S_{xw}^{-1}S_{xh}$ is of rank M -1.
• If $\ell=M-1$, choose C to consist of the M -1
eigenvectors, corresponding to the non-zero
eigenvalues.
 $p = C^T x$
The above guarantees maximum J_3 value. In this
case: $J_{3x} = J_{3y}$.
• For a two-class problem, this results to the well
known Fisher's linear discriminant.
 $\underline{P} = (\underline{\mu}_1 - \underline{\mu}_2) S_{xw}^{-1} \underline{X}$
For Gaussian classes, this is the optimal Bayesian
classifier, with a difference of a threshold value.

	Resultados PCA - Iris	
*	v=	
* * *	-0.3173 0.5810 0.6565 0.3616 0.3241 -0.5964 0.7297 -0.0823 0.4797 -0.0275 -0.1788 0.8566 -0.7511 -0.5491 -0.0747 0.3588	
*	d =	
* * *	3.5288 0 0 0 0 11.700 0 0 0 0 36.0943 0 0 0 0 629.5013	
*	w =	
***	0.3516 0.6555 sepal length -0.0823 0.257 sepal width 0.8566 -0.1758 petal length 0.3588 -0.0747 petal width 1º eixo 2º eixo	
		49

		Result	luuusiu	
*	w =		*	wine_fields =
			*	Origin
÷	0.0017	-0.0012	*	Alcohol
٠	-0.0007	-0.0022	*	Malic acid
٠	0.0002	-0.0046	*	Ash
¢	-0.0047	-0.0265	*	Alcalinity of ash
÷	0.0179	-0.9993	*	Magnesium
٠	0.0010	-0.0009	*	Total phenols
¢	0.0016	0.0001	*	Flavanoids
٠	-0.0001	0.0014	*	Nonflavanoid phenols
٠	0.0006	-0.0050	*	Proanthocyanins
¢	0.0023	-0.0151	*	Color intensity
٠	0.0002	0.0008	*	Hue
٠	0.0007	0.0035	*	OD280/OD315 of diluted wines
*	0.9998	0.0178	*	Proline

