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The goals:
Select the “optimum” number l of features
Select the “best” l features

Large l has a three-fold disadvantage:
High computational demands
Low generalization performance
Poor error estimates

FEATURE SELECTION

2

Given N
• l must be large enough to learn

– what makes classes different
– what makes patterns in the same class similar

• l must be small enough not to learn what makes 
patterns of the same class different

• In practice, has been reported to be a sensible 
choice for a number of cases

Once l has been decided, choose the l most informative 
features
• Best:  Large between class distance, 

Small within class variance
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The basic philosophy
Discard individual features with poor information content
The remaining information rich features are examined 
jointly as vectors
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Feature Selection based on statistical Hypothesis Testing
The Goal:  For each individual feature, find whether the 
values, which the feature takes for the different classes,
differ significantly.
That is, answer
• : The values differ significantly
• : The values do not differ significantly

If they do not differ significantly reject feature from 
subsequent stages.

Hypothesis Testing Basics
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The steps:
• N measurements

are known

• Define a function of them

test statistic

so that is easily parameterized in 
terms of θ.

• Let D be an interval, where q has a high 
probability to lie under H0, i.e., pq(q׀θ0)

• Let D  be the complement of D
D Acceptance Interval
D Critical Interval

• If q, resulting from 
lies in D we accept H0, otherwise we reject it.
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Probability of an error

• ρ is preselected and it is known as the significance 
level.

ρ=∈ )( 0HDqpq

1-ρ

8

Application:  The known variance case:

Let x be a random variable and the experimental 
samples,                 , are assumed mutually 
independent. Also let

Compute the sample mean

This is also a random variable with mean value

That is, it is an Unbiased Estimator
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The variance

Due to independence

That is, it is Asymptotically Efficient

Hypothesis test

Test Statistic: Define the variable
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Central limit theorem under H0

Thus, under H0
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The decision steps
• Compute q from xi, i=1,2,…,N
• Choose significance level ρ
• Compute from N(0,1) tables D=[-xρ, xρ]

•

An example: A random variable x has variance 
σ2=(0.23)2.  Ν=16 measurements are obtained giving

. The significance level is ρ=0.05.  

Test the hypothesis
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Since σ2 is known, is N(0,1).  

From tables, we obtain the values with acceptance 
intervals [-xρ, xρ] for normal N(0,1)

Thus
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Since lies within the above acceptance
interval, we accept H0, i.e.,

The interval [1.237, 1.463] is also known as 
confidence interval at the 1-ρ=0.95 level.

We say that:  There is no evidence at the 5% level 
that the mean value is not equal to 
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The Unknown Variance Case

Estimate the variance.  The estimate

is unbiased, i.e.,

Define the test statistic
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This is no longer Gaussian.  If x is Gaussian, then
q follows a t-distribution, with N-1 degrees of 
freedom

An example:

.025.0 level cesignifican at the
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Table of acceptance intervals for t-distribution

accepted is 4.1ˆ Thus,
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Application in Feature Selection

The goal here is to test against zero the 
difference µ1-µ2 of the respective means in 
ω1, ω2 of a single feature.

Let xi i=1,…,N , the values of a feature in ω1

Let yi i=1,…,N , the values of the same feature in 
ω2

Assume in both classes 
(unknown or not)

The test becomes
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Define
z=x-y

Obviously
E[z]=µ1-µ2

Define the average

Known Variance Case:  Define

This is N(0,1) and one follows the procedure as before.
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Unknown Variance Case:
Define the test statistic

• q is t-distribution with 2N-2 degrees of freedom,
• Then apply appropriate tables as before.

Example: The values of a feature in two classes are:
ω1:       3.5, 3.7, 3.9, 4.1, 3.4, 3.5, 4.1, 3.8, 3.6, 3.7
ω2:       3.2, 3.6, 3.1, 3.4, 3.0, 3.4, 2.8, 3.1, 3.3, 3.6

Test if the mean values in the two classes differ 
significantly, at the significance level ρ=0.05
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We have

For N=10

From the table of the t-distribution with 2N-2=18 
degrees of freedom and ρ=0.05, we obtain        
D=[-2.10,2.10] and since q=4.25 is outside D, H1 is 
accepted and the feature is selected.
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Class Separability Measures
The emphasis so far was on individually considered features. 
However, such an approach cannot take into account existing 
correlations among the features. That is, two features may be 
rich in information, but if they are highly correlated we need not 
consider both of them.  To this end, in order to search for 
possible correlations, we consider features jointly as elements of 
vectors. To this end:

Discard poor in information features, by means of a statistical 
test.

Choose the maximum number,   , of features to be used. This 
is dictated by the specific problem (e.g., the number, N, of 
available training patterns and the type of the classifier to be
adopted). 

l

22

Combine remaining features to search for the “best”
combination. To this end:

• Use different feature combinations to form the feature 
vector. Train the classifier, and choose the combination 
resulting in the best classifier performance.
A major disadvantage of this approach is the high 
complexity. Also, local minima, may give misleading 
results.

• Adopt a class separability measure and choose the best 
feature combination against this cost.

23

Class separability measures: Let     be the current feature 
combination vector.
• Divergence. To see the rationale behind this cost, consider 

the two – class case. Obviously, if on the average the

value of                 is close to zero, then    should be a

poor feature combination. Define:

–

–

–

d12 is known as the divergence and can be used as a 
class separability measure.
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– For the multi-class case, define dij for every pair of 
classes ωi, ωj and the average divergence is defined as

– Some properties:

– Large values of d are indicative of good feature 
combination.
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Scatter Matrices. These are used as a measure of the way 
data are scattered in the respective feature space.
• Within-class scatter matrix

where

and

ni the number of training samples in ωi.

Trace {Sw} is a measure of the average variance of the 
features.
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• Between-class scatter matrix

Trace {Sb} is a measure of the average distance of the 
mean of each class from the respective global one.

• Mixture scatter matrix

It turns out that:
Sm = Sw + Sb
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Measures based on Scatter Matrices.

•

•

•

• Other criteria are also possible, by using various 
combinations of Sm, Sb, Sw.

The above J1, J2, J3 criteria  take high values for the cases 
where:
• Data are clustered together within each class.
• The means of the various classes are far.
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• Fisher’s discriminant ratio. In one dimension and for two
equiprobable classes the determinants become:

and

known as Fischer’s ratio.
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Ways to combine features:
Trying to form all possible combinations of     features from an
original set of m selected features is a computationally hard task. 
Thus, a number of suboptimal searching techniques have been 
derived.

Sequential forward selection. Let x1, x2, x3, x4 the available 
features (m=4). The procedure consists of the following steps:
• Adopt a class separability criterion (could also be the error 

rate of the respective classifier). Compute its value for ALL
features considered jointly [x1, x2, x3, x4]T.

• Eliminate one feature and for each of the possible resulting 
combinations, that is [x1, x2, x3]T, [x1, x2, x4]T, [x1, x3, x4]T, [x2, 
x3, x4]T, compute the class reparability criterion value C. 
Select the best combination, say [x1, x2, x3]T.

l
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• From the above selected feature vector eliminate one 
feature and for each of the resulting combinations,           
,            , compute and select the best 
combination.

The above selection procedure shows how one can start from   
features and end up with the “best” ones. Obviously, the 
choice is suboptimal. The number of required calculations is:

In contrast,  a full search  requires:

operations.
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Sequential backward selection. Here the reverse procedure is 
followed.
• Compute C for each feature. Select the “best” one, say x1

• For all possible 2D combinations of x1, i.e., [x1, x2], [x1, x3], 
[x1, x4] compute C and choose the best, say [x1, x3].

• For all possible 3D combinations of [x1, x3], e.g.,    
[x1, x3, x2], etc., compute C and choose the best one.

The above procedure is repeated till the “best” vector with 
features has been formed. This is also a suboptimal
technique, requiring:

operations.

l

2
)1( −

−
ll

lm

33

Floating Search Methods

The above two procedures suffer from the nesting effect. 
Once a bad choice has been done, there is no way to 
reconsider it in the following steps.

In the floating search methods one is given the opportunity in 
reconsidering a previously discarded feature or to discard a 
feature that was previously chosen.

The method is still suboptimal, however it leads to improved
performance, at the expense of complexity.

34

Remarks:
• Besides suboptimal techniques, some optimal searching 

techniques can also be used, provided that the optimizing 
cost has certain properties, e.g., monotonic.

• Instead of using a class separability measure (filter 
techniques) or using directly the classifier (wrapper 
techniques), one can modify the cost function of the 
classifier appropriately, so that to perform feature selection 
and classifier design in a single step (embedded) method.

• For the choice of the separability measure a multiplicity of 
costs have been proposed, including information theoretic
costs.

35

Optimal Feature GenerationOptimal Feature Generation

In general, feature generation is a problem-dependent 
task. However, there are a few general directions 
common in a number of applications. We focus on three 
such alternatives.

Optimized features based on Scatter matrices (Fisher’s 
linear discrimination). 
• The goal: Given an original set of m measurements

, compute , by the linear transformation

so that the J3 scattering matrix criterion involving Sw, Sb
is maximized. AT is an matrix.

mx ℜ∈ lℜ∈y

xAy T=

xml
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• The basic steps in the proof:
– J3 = trace{Sw

-1 Sm}
– Syw = ATSxwA, Syb = ATSxbA,
– J3(A)=trace{(ATSxwA)-1 (ATSxbA)}
– Compute A so that J3(A) is maximum.

• The solution: 

– Let B be the matrix that diagonalizes 
simultaneously matrices Syw, Syb , i.e:

BTSywB = I , BTSybB = D
where B is a ℓxℓ matrix and D a ℓxℓ diagonal matrix.
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– Let C=AB an mxℓ matrix. If A maximizes J3(A) then

The above is an eigenvalue-eigenvector problem. 
For an M-class problem,           is of rank M-1.

If ℓ=M-1, choose C to consist of the M-1 
eigenvectors, corresponding to the non-zero 
eigenvalues.

The above guarantees maximum J3 value. In this 
case: J3,x = J3,y.
For a two-class problem, this results to the well 
known Fisher’s linear discriminant

For Gaussian classes, this is the optimal Bayesian 
classifier, with a difference of a threshold value .
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If ℓ<M-1, choose the ℓ eigenvectors corresponding to 
the ℓ largest eigenvectors.
In this case, J3,y<J3,x, that is there is loss of 
information.

– Geometric interpretation. The vector   is the 
projection of      onto the subspace spanned by the 
eigenvectors of            .

y
x
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loadiris
data=iris(:,1:4);
m1=mean(data(1:50,:));
m2=mean(data(51:100,:));
m3=mean(data(101:150,:));

m=(m1+m2+m3)/3;

sb=(m1-m)'*(m1-m)+(m2-m)'*(m2-m)+(m3-m)'*(m3-m);

s1=zeros(4,4);
s2=s1;
s3=s1;
for i=1:50

s1=s1+(data(i,:)-m1)'*(data(i,:)-m1);
end
for i=51:100

s2=s2+(data(i,:)-m2)'*(data(i,:)-m2);
end
for i=101:150

s3=s3+(data(i,:)-m3)'*(data(i,:)-m3);
end

sw=s1+s2+s3;

[v,d]=eig(inv(sw)*sb)
w=[v(:,1), v(:,2)]
k=w'*data';
plot(k(1,1:50),k(2,1:50),'ro',k(1,51:100),k(2,51:100),'b*',k(1,101:150),k(2,101:150),'kd');
xlabel('eixo principal');
ylabel('segundo eixo'); 40

Resultado LDA Resultado LDA -- IrisIris

41

Resultado LDA Resultado LDA -- IrisIris

v =

0.2049   -0.0090    0.3398   -0.6672
0.3871   -0.5890    0.1988    0.4427
-0.5465    0.2543    0.2728    0.4688
-0.7138   -0.7670   -0.8779   -0.3729

d =

0.6454         0         0         0
0    0.0056         0         0
0         0    0.0000         0
0         0         0   -0.0000

w =

0.2049   -0.0090 sepal length
0.3871   -0.5890 sepal width
-0.5465    0.2543 petal length
-0.7138   -0.7670 petal width
1º eixo     2º eixo

42

Principal Components Analysis
(The Karhunen – Loève transform):

The goal: Given an original set of m measurements 
compute 

for an orthogonal A, so that the elements of    are 
optimally mutually uncorrelated.
That is 

Sketch of the proof:

mx ℜ∈
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• If A is chosen so that its columns     are the 
orthogonal eigenvectors of Rx, then

where Λ is diagonal with elements the respective 
eigenvalues λi.

• Observe that this is a sufficient condition but not 
necessary. It imposes a specific orthogonal
structure on A.

Properties of the solution
• Mean Square Error approximation.

Due to the orthogonality of A:
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− Define

− The Karhunen – Loève transform minimizes the 
square error:

− The error is:

It can be also shown that this is the minimum 
mean square error compared to any other 
representation of x by an ℓ-dimensional vector.
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− In other words,      is the projection of      into 
the subspace spanned by the principal ℓ
eigenvectors. However, for Pattern Recognition 
this is not the always the best solution.

x̂ x

46

• Total variance: It is easily seen that

Thus Karhunen – Loève transform makes the total 
variance maximum.

• Assuming     to be a zero mean multivariate 
Gaussian, then the K-L transform maximizes the 
entropy:

of the resulting     process.
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PCAPCA

loadiris
data=iris(:,1:4)-repmat(mean(iris(:,1:4)),size(iris,1),1)
[v,d]=eig(data'*data)
w=[v(:,4), v(:,3)]
k=w'*data';
plot(k(1,1:50),k(2,1:50),'ro',k(1,51:100),k(2,51:100),'b*',k(1,101:150),
k(2,101:150),'kd');
xlabel('eixo principal');
ylabel('segundo eixo');

48

Resultado PCA Resultado PCA -- IrisIris
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Resultados PCA Resultados PCA -- IrisIris

v =

-0.3173    0.5810    0.6565    0.3616
0.3241   -0.5964    0.7297   -0.0823
0.4797   -0.0725   -0.1758    0.8566
-0.7511   -0.5491   -0.0747    0.3588

d =

3.5288         0         0         0
0   11.7001         0         0
0         0   36.0943         0
0         0         0  629.5013

w =

0.3616    0.6565 sepal length
-0.0823    0.7297 sepal width
0.8566   -0.1758 petal length
0.3588   -0.0747 petal width

1º eixo       2º eixo                

50

Resultados PCA Resultados PCA -- WineWine

51

Resultados PCA Resultados PCA -- WineWine

w =

0.0017   -0.0012
-0.0007   -0.0022
0.0002   -0.0046
-0.0047   -0.0265
0.0179   -0.9993
0.0010   -0.0009
0.0016    0.0001
-0.0001    0.0014
0.0006   -0.0050
0.0023   -0.0151
0.0002    0.0008
0.0007    0.0035
0.9998    0.0178

wine_fields =

Origin
Alcohol
Malic acid
Ash
Alcalinity of ash
Magnesium
Total phenols
Flavanoids
Nonflavanoid phenols
Proanthocyanins
Color intensity
Hue
OD280/OD315 of diluted wines
Proline

52

Resultados LDA Resultados LDA -- WineWine

53

Resultados LDA Resultados LDA -- WineWine

w =

-0.1241    0.2644
0.0631    0.0878
-0.0848    0.7003
0.0511   -0.0458
-0.0008   -0.0001
0.2144   -0.0193
-0.5869   -0.1194
-0.5506   -0.4592
0.0409   -0.0930
0.1282    0.0694
-0.3127   -0.4357
-0.4017    0.0334
-0.0009    0.0009

wine_fields =

Origin
Alcohol
Malic acid
Ash
Alcalinity of ash
Magnesium
Total phenols
Flavanoids
Nonflavanoid phenols
Proanthocyanins
Color intensity
Hue
OD280/OD315 of diluted wines
Proline

54

Subspace Classification. Following the idea of projecting in 
a subspace, the subspace classification classifies an 
unknown      to the class whose subspace is closer to .
The following steps are in order:

• For each class, estimate the autocorrelation matrix Ri, 
and compute the m largest eigenvalues. Form Ai, by 
using respective eigenvectors as columns.

• Classify      to the class ωi, for which the norm of the 
subspace projection is maximum

According to Pythagoras theorem, this corresponds to 
the subspace to which     is closer.
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Independent Component Analysis (ICA)
In contrast to PCA, where the goal was to produce 
uncorrelated features, the goal in ICA is to produce 
statistically independent features. This is a much 
stronger requirement, involving higher to second order 
statistics. In this way, one may overcome the problems 
of PCA, as exposed before.

The goal: Given      , compute 

so that the components of  are statistically 
independent. In order  the problem to have a 
solution, the following assumptions must be valid:
• Assume that     is indeed generated by a linear 

combination of independent components

x lℜ∈y
xWy =

y

x

yΦx =
56

Φ is known as the mixing matrix and W as the demixing
matrix.

• Φ must be invertible or of full column rank.
• Identifiability condition: All independent components, 

y(i), must be non-Gaussian. Thus, in contrast to PCA 
that can always be performed, ICA is meaningful for 
non-Gaussian variables. 

• Under the above assumptions, y(i)’s can be uniquely 
estimated, within a scalar factor.
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Common’s method: Given   , and under the 
previously stated assumptions, the following steps 
are adopted:
• Step 1: Perform PCA on     :

• Step 2: Compute a unitary matrix,   , so that the fourth 
order cross-cummulants of the transform vector

are zero. This is equivalent to searching for an     that 
makes the squares of the auto-cummulants maximum,

where, is the 4th order auto-cumulant.

x

x

xAy T=

Â

yAy T ˆˆ=
Â

( )24ˆˆ
)()ˆ(max ∑=Ψ iykA

TAA

( )⋅4k
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• Step 3: 
A hierarchy of components: which ℓ to use? In PCA 
one chooses the principal ones. In ICA one can 
choose the ones with the least resemblance to the 
Gaussian pdf. 

( )TAAW ˆ=
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The principal component is    , thus according to PCA one 
chooses as y the projection of      into      . According to ICA, 
one chooses as y the projection on     . This is the least 
Gaussian. Indeed:

K4(y1) =  -1.7
K4(y2) =   0.1

Observe that across     , the statistics is bimodal. That is, no 
resemblance to Gaussian.

Example:

2α
x

1α
1α

2α
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MeasuresMeasures ofof nongaussianitynongaussianity

To use nongaussianity in ICA estimation, we must have a quantitative
measure of nongaussianity of a random variable, say y. To simplify
things, let us assume that y is centered (zero-mean) and has variance
equal to one. 
Kurtosis

The classical measure of nongaussianity is kurtosis or the fourth-order
cumulant. The kurtosis of y is classically defined by

kurt(y) = E {y 4}−3(E {y 2})2

Negentropy
A second very important measure of nongaussianity is given by negentropy. 
Negentropy is based on the information-theoretic quantity of (differential) 
entropy.
Negentropy J is defined as follows

J (y) = H (ygauss)−H (y)


