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The goal is to estimate the error probability of the 
designed classification system

Error Counting Technique
Let    classes 
Let     data points in class      for testing.

the number of
test points.

Let Pi the probability error for class ωi
The classifier is assumed to have been designed 
using another independent data set
Assuming that the feature vectors in the test data set 
are independent, the probability of ki vectors from ωi
being in error is 
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Since Pi’s are not known, estimate Pi by 
maximizing the above binomial distribution. It 
turns out that

Thus, count the errors and divide by the total 
number of test points in class

Total probability of error
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Statistical Properties

•

•

•

•

Thus the estimator is unbiased but only asymptotically 
consistent. Hence for small N, may not be reliable

A theoretically derived estimate of a sufficient number N
of the test data set is 
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IntroductionIntroduction

Questions:
Assessment of the expected error of a learning algorithm: Is the
error rate of 1-NN less than 2%?
Comparing the expected errors of two algorithms: Is k-NN more 
accurate than MLP ?

Training/validation/test sets
Resampling methods: K-fold cross-validation
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Algorithm PreferenceAlgorithm Preference

Criteria (Application-dependent):
Misclassification error, or risk (loss functions)
Training time/space complexity
Testing time/space complexity
Interpretability
Easy programmability

Cost-sensitive learning
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Resampling and Resampling and 
KK--Fold CrossFold Cross--ValidationValidation

The need for multiple training/validation sets
{Xi,Vi}i: Training/validation sets of fold i
K-fold cross-validation: Divide X into k, Xi,i=1,...,K

Ti share K-2 parts
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BootstrappingBootstrapping

Draw instances from a dataset with replacement
Prob that we do not pick an instance after N draws

that is, only 36.8% is new!
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Measuring ErrorMeasuring Error

Error rate = # of errors / # of instances = (FN+FP) / N
Recall = # of found positives / # of positives 

= TP / (TP+FN) = sensitivity = hit rate
Precision = # of found positives / # of found

= TP / (TP+FP)
Specificity = TN / (TN+FP)
False alarm rate = FP / (FP+TN) = 1 - Specificity
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ROC CurveROC Curve
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Exploiting the finite size of the data set.

Resubstitution method:
Use the same data for training and testing.  It
underestimates the error. The estimate improves 
for large N and large       ratios.

Holdout Method:  Given N divide it into:
N1:  training points
N2:  test points
N=N1+N2

• Problem:  Less data both for training and test 

l
N



12

Leave-one-out Method

The steps:
• Choose one sample out of the N.  Train the 

classifier using the remaining N-1 samples.  Test 
the classifier using the selected sample.  Count 
an error if it is misclassified.

• Repeat the above by excluding a different
sample each time.

• Compute the error probability by averaging the 
counted errors 
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Advantages:
• Use all data for testing and training
• Assures independence between test and training 

samples

Disadvantages:
• Complexity in computations high

Variants of it exclude k>1 points each time, to 
reduce complexity
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Non Linear ClassifiersNon Linear Classifiers

The XOR problem
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There is no single line (hyperplane) that separates 
class A from class B.  On the contrary, AND and OR 
operations are linearly separable problems
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The Two-Layer Perceptron

For the XOR problem, draw two, instead, of one lines



17

Hints from Generalization Theory.
Generalization theory aims at providing general bounds that 
relate the error performance of a classifier with the number of 
training points, N, on one hand, and some classifier dependent 
parameters, on the other. Up to now, the classifier dependent 
parameters that we considered were the number of its free 
parameters and the dimensionality,   , of the subspace, in which 
the classifier operates. (  also affects the number of free 
parameters).

Definitions
• Let the classifier be a binary one, i.e.,

• Let F be the set of all functions f  that can be realized by 
the adopted classifier (e.g., changing the synapses of a 
given neural network different functions are implemented).

l
l
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• The shatter coefficient S(F,N) of the class F is defined as: 
the maximum number of dichotomies of N points that can 
be formed by the functions in F.
The maximum possible number of dichotomies is 2N. 
However, NOT ALL dichotomies can be realized by the set 
of functions in F.

• The Vapnik – Chernovenkis (VC) dimension of a class F is 
the largest integer k for which S(F,k) = 2k. If S(F,N)=2N,
we say that the VC dimension is infinite. 

– That is, VC is the integer for which the class of 
functions F can achieve all possible dichotomies, 2k.

– It is easily seen that the VC dimension of the single 
perceptron class, operating in the ℓ-dimensional space, 
is ℓ+1.

,N∀
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VC DimensionVC Dimension

N points can be labeled in 2N ways as +/–
H shatters N if there 
exists h ∈ H consistent 
for any of these: 
VC(H ) = N

An axis-aligned rectangle shatters 4 points only !
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ShatteringShattering

Machine f can shatter a set of points x1, x2 .. Xr if and only if…
For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…There exists some value of α that gets zero training error.

Question: Can the following f shatter the following points?

f(x,b) = sign(x.x-b)

Answer: No way my friend. 
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VC dim of trivial circleVC dim of trivial circle

Given machine f, the VC-dimension h is
The maximum number of points that can be arranged so that f shatter 
them. 

Example: What’s VC dimension of f(x,b) = sign(x.x-b)
Answer = 1: we can’t even shatter two points! (but it’s clear we can shatter 1)
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Reformulated circleReformulated circle

Given machine f, the VC-dimension h is
The maximum number of points that can be arranged so that f shatter 
them. 

Example: What’s VC dimension of f(x,q,b) = sign(qx.x-b)

Answer = 2 (clearly can’t do 3)

q,b are -ve
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– It can be shown that

Vc: the VC dimension of the class.
That is, the shatter coefficient is either 2N (the 
maximum possible number of dichotomies) or it is 
upper bounded, as suggested by the above inequality.

In words, for finite Vc and large enough N, the shatter 
coefficient is bounded by a polynomial growth.

º Note that in order to have a polynomial growth of the 
shatter coefficient, N must be larger than the Vc
dimension.

– The Vc dimension can be considered as an intrinsic 
capacity of the classifier, and, as we will soon see, 
only if the number of training vectors exceeds this 
number sufficiently, we can expect good generalization 
performance.

1),( +≤ cVNNFS
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• The    dimension may or may not be related to the 
dimension    and the number of free parameters.

– Perceptron:
– Multilayer perceptron with hard limiting activation 

function

where      is the total number of hidden layer nodes,    
the total number of nodes, and      the total number of 
weights.

– Let      be  a training data sample  and assume that
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Let also a hyperplane such that

and

(i.e., the constraints we met in the SVM formulation). 
Then 

That is, by controlling the constant c, the     of the 
linear classifier can be less than   . In other words,    
can be controlled independently of the dimension. 
Thus, by minimizing       in the SVM, one attempts to 
keep      as small as possible. Moreover, one can 
achieve finite dimension, even for infinite 
dimensional spaces. This is an explanation of the 
potential for good generalization performance of the 
SVM’s, as this is readily deduced from the following 
bounds.
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Generalization Performance
• Let          be the error rate of classifier f, based on the N

training points, also known as empirical error.

• Let        be the true error probability of f (also known as 
generalization error), when f is confronted with data 
outside the finite training set.

• Let    be the minimum error probability that can be 
attained over ALL functions in the set F.

 fPN
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• Let    be the function resulting by minimizing the empirical 
(over the finite training set) error function.

• It can be shown that:

–

–

– Taking into account that for finite dimension, the 
growth of              is only polynomial, the above 
bounds tell us that for a large N :

º is close to , with high probability.
º is close to      , with high probability.
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Where,               constants.  In words, for                  
the performance of the classifier is guaranteed,
with high probability, to be close to the optimal 
classifier in the class F.              is known as 
the sample complexity.

• Some more useful bounds
– The minimum number of points,          , that 

guarantees, with high probability, a good 
generalization error performance is given by

That is, for any
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– With a probability of at least          the following bound 
holds:

where

Remark: Observe that all the bounds given so far are:
• Dimension free
• Distribution free
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Model Complexity vs Performance
This issue has already been touched in the form of overfitting in 
neural networks modeling and in the form of bias-variance 
dilemma. A different perspective of the issue is dealt below.

Structural Risk Minimization (SRM)
• Let     be he Bayesian error probability for a given task.
• Let         be the true (generalization) error of an 

optimally design classifier   , from class     , given a finite
training set.

•
is the minimum error attainable in 

– If the class       is small, then the first term is expected
to be small and the second term is expected to be 
large. The opposite is true when the class    is large
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• Let                   be a sequence of nested classes:

with increasing, yet finite     dimensions.

Also, let 

For each N and class of functions F(i), i=1, 2, …, compute 
the optimum f*

N,i, with respect to the empirical error. Then 
from all these classifiers choose the one than minimizes, 
over all i, the upper bound in:

That is, 
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• Then, as 

– The term

in the minimized bound is  a complexity penalty term. 
If the classifier model is simple the penalty term is 
small but the empirical error term 

will be large. The opposite is true for complex
models.

• The SRM criterion aims at achieving the best trade-off
between performance and complexity.
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Bayesian Information Criterion (BIC)
Let    the size of the training set,     the vector of the 
unknown parameters of the classifier,  the 
dimensionality of     , and    runs over all possible 
models.

• The BIC criterion chooses the model by minimizing:

– is the log-likelihood computed at the ML 
estimate      , and it is the performance index.

– is the model complexity term.

• Akaike Information Criterion:

N mθ
mK

mθ m

( ) NKLBIC mm lnˆ2 +−= θ
( )mL θ̂

mθ̂

( ) mm KLAIC 2ˆ2 +−= θ

NKm ln
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Which model selection method is best?Which model selection method is best?

1. (CV) Cross-validation
2. AIC (Akaike Information Criterion)
3. BIC (Bayesian Information Criterion)
4. (SRMVC) Structural Risk Minimize with VC-dimension

AIC, BIC and SRMVC have the advantage that you only need the training error.
CV error might have more variance
SRMVC is wildly conservative
Asymptotically AIC and Leave-one-out CV should be the same
Asymptotically BIC and a carefully chosen k-fold should be the same
BIC is what you want if you want the best structure instead of the best predictor (e.g. for 
clustering or Bayes Net structure finding)
Many alternatives to the above including proper Bayesian approaches.
It’s an emotional issue.
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The goal:  Given two linearly separable classes, design 
the classifier

that leaves the maximum margin from both classes

0)( 0 =+= wxwxg T

Support Vector Machines
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Margin:  Each hyperplane is characterized by

• Its direction in space, i.e., 

• Its position in space, i.e.,

• For EACH direction, , choose the hyperplane that 
leaves the SAME distance from the nearest points 
from each class. The margin is twice this distance.

w
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The distance of a point  from a hyperplane 
is given by 

Scale, so that at the nearest points from 
each class the discriminant function is ±1:

Thus the margin is given by

Also, the following is valid
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SVM (linear) classifier

Minimize

Subject to

The above is justified since by  minimizing

the margin is maximised
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The above is a quadratic optimization task, subject to 
a set of linear inequality constraints.  The Karush-
Kuhh-Tucker conditions state that the minimizer
satisfies:

• (1)

• (2)

• (3)

• (4)

• Where is the Lagrangian
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The solution:  from the above, it turns out that

•

•
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Remarks:
• The Lagrange multipliers can be either zero or

positive.  Thus,

–

where , corresponding to positive
Lagrange multipliers

– From constraint (4) above, i.e.,

the vectors contributing to
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– These vectors are known as SUPPORT 
VECTORS and are the closest vectors, from 
each class, to the classifier.

– Once  is computed,  is determined from 
conditions (4).

– The optimal hyperplane classifier of a support 
vector machine is UNIQUE.

– Although the solution is unique, the resulting 
Lagrange multipliers are not unique. 

w 0w
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Dual Problem Formulation
• The SVM formulation is a convex programming 

problem, with
– Convex cost function
– Convex region of feasible solutions

• Thus, its solution can be achieved by its dual 
problem, i.e.,

– maximize

– subject to
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• Combine the above to obtain

– maximize

– subject to
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Remarks:
• Support vectors enter via inner products

Non-Separable classes
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In this case, there is no hyperplane such that

• Recall that the margin is defined as twice the 
distance between the following two hyperplanes
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The training vectors belong to one of  three possible 
categories

1) Vectors outside the band which are correctly
classified, i.e.,

2) Vectors inside the band, and correctly classified,
i.e.,

3) Vectors misclassified, i.e.,
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All three cases above can be represented as

1)
2)
3)

are known as slack variables
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The goal of the optimization is now two-fold
• Maximize margin
• Minimize the number of patterns with           ,

One way to achieve this goal is via the cost

where C is a constant and

• I(.) is not differentiable.  In practice, we use an 
approximation

•

• Following a similar procedure as before we obtain
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KKT conditions
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The associated dual problem

Maximize

subject to

Remarks: The only difference with the separable
class case is the existence of     in the 
constraints
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Training the SVM
A major problem is the high computational cost. To 
this end, decomposition techniques are used. The 
rationale behind them consists of the following:

• Start with an arbitrary data subset (working set) that 
can fit in the memory. Perform optimization, via a 
general purpose optimizer.

• Resulting support vectors remain in the working set, 
while others are replaced by new ones (outside the set) 
that violate severely the KKT conditions.

• Repeat the procedure.
• The above procedure guarantees that the cost function 

decreases.
• Platt’s SMO algorithm chooses a working set of two 

samples, thus analytic optimization solution can be 
obtained.
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Multi-class generalization
Although theoretical generalizations exist, the most 
popular in practice is to look at the problem as M two-
class problems (one against all).

Example:

Observe the effect of different values of C in the case of 
non-separable classes.
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Generalized Linear Classifiers

Remember the XOR problem.  The mapping

The activation function transforms the 
nonlinear task into a linear one.

In the more general case:
• Let and a nonlinear classification task.
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• Are there any functions and an appropriate k, so 
that the mapping

transforms the task into a linear one, in the 
space?

• If this is true, then there exists a hyperplane
so that
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In such a case this is equivalent with 
approximating the nonlinear discriminant function 
g(x), in terms of           i.e.,

Given , the task of computing the weights 
is a linear one.

How sensible is this??
• From the numerical analysis point of view, this 

is justified if are interpolation functions.
• From the Pattern Recognition point of view, this 

is justified by Cover’s theorem
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Capacity of the l-dimensional space in Linear 
Dichotomies

Assume N points in assumed to be in general 
position, that is: 

lR

Not of these lie on a dimensional space1+l 1−l
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Cover’s theorem states:  The number of groupings 
that can be formed by (l-1)-dimensional hyperplanes
to separate N points in two classes is

Example: N=4, l=2, O(4,2)=14

Notice: The total number of possible groupings is
24=16
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Probability of grouping N points in two linearly 
separable classes is
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Thus, the probability of having N points in linearly
separable classes tends to 1, for large , provided
N<2(  +1)

Hence, by mapping to a higher dimensional space, 
we increase the probability of linear separability, 
provided the space is not too densely populated.

l
l
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Radial Basis Function Networks (RBF)

Choose
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Equivalent to a single layer network, with RBF 
activations and linear output node.
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Example: The XOR problem

• Define:

•
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Training of the RBF networks

• Fixed centers:  Choose centers randomly among the 
data points.  Also fix σi’s.  Then

is a typical linear classifier design.

• Training of the centers:  This is a nonlinear
optimization task

• Combine supervised and unsupervised learning 
procedures.

• The unsupervised part reveals clustering tendencies
of the data and assigns the centers at the cluster 
representatives.

ywwxg T+= 0)(
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Universal Approximators

It has been shown that any nonlinear continuous 
function can be approximated arbitrarily close, both, by 
a two layer perceptron, with sigmoid activations, and 
an RBF network, provided a large enough number of 
nodes is used.

Multilayer Perceptrons vs. RBF networks

MLP’s involve activations of global nature.  All points 
on a plane give the same response.

RBF networks have activations of a local nature, due 
to the exponential decrease as one moves away 
from the centers.

MLP’s learn slower but have better generalization 
properties

cxwT =
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Support Vector Machines:  The non-linear case

Recall that the probability of having linearly 
separable classes increases as  the 
dimensionality of the  feature vectors 
increases. Assume the mapping:

Then use SVM in Rk

Recall that in this case the dual problem 
formulation will be
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Also, the classifier will be

Thus, inner products in a high dimensional space 
are involved, hence

• High complexity
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Something clever:  Compute the inner products in 
the high dimensional space as functions of inner 
products performed in the low dimensional 
space!!!

Is this POSSIBLE??  Yes.  Here is an example

Then, it is easy to show that
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Mercer’s Theorem

Then, the inner product in H

where

for any g(x), x:

K(x,y) symmetric function known as kernel.
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The opposite is also true.  Any kernel, with the above 
properties, corresponds to an inner product in SOME
space!!!

Examples of kernels
• Polynomial:

• Radial  Basis Functions:

• Hyperbolic Tangent:

for appropriate values of β, γ.
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SVM Formulation 
• Step 1: Choose appropriate kernel.  This 

implicitely assumes a mapping to a 
higher dimensional (yet, not known)
space.

• Step 2:

This results to an implicit combination

0
,...,2,1  ,0   :subject to

)),(
2
1(

,
max

=

=≤≤

−

∑

∑∑

i
ii

i

jijij
ji

i
i

i

y
NiC

xxKyy

λ

λ

λλλ
λ

)(
1

ii

N

i
i xyw

s

ϕλ∑
=

=



73

• Step 3: Assign x to

• The SVM Architecture
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Combining Classifiers
The basic philosophy behind the combination of different 
classifiers lies in the fact that even the “best” classifier fails in 
some patterns that other classifiers may classify correctly. 
Combining classifiers aims at exploiting this complementary 
information residing in the various classifiers.

Thus, one designs different optimal classifiers and then 
combines the results with a specific rule.

Assume that each of the, say, L designed classifiers provides 
at its output the posterior probabilities:

, ..., M, ixP i 21 ),|( =ω
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• Product Rule: Assign     to the class     :

where                  is the respective posterior probability of the 
jth classifier.

• Sum Rule: Assign     to the class :
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• Majority Voting Rule: Assign    to the class for which 
there is a consensus or when at least    of the classifiers 
agree on the class label of     where:

otherwise the decision is rejection, that is no decision is 
taken.
Thus, correct decision is made if the majority of the 
classifiers agree on the correct label, and wrong decision 
if the majority agrees in the wrong label.
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Dependent or not Dependent classifiers?

• Although there are not general theoretical results, 
experimental evidence has shown that the more 
independent in their decision the classifiers are, the higher 
the expectation should be for obtaining improved results 
after combination. However, there is no guarantee that 
combining classifiers results in better performance 
compared to the “best” one among the classifiers.

Towards Independence: A number of Scenarios.

• Train the individual classifiers using different training data 
points. To this end, choose among a number of 
possibilities:

– Bootstrapping: This is a popular technique to combine 
unstable classifiers such as decision trees (Bagging belongs 
to this category of combination).
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– Stacking: Train the combiner with data points that have been 
excluded from the set used to train the individual classifiers.

– Use different subspaces to train individual classifiers:
According to the method, each individual classifier operates 
in a different feature subspace. That is, use different features
for each classifier.

Remarks:
• The majority voting and the summation schemes rank 

among the most popular combination schemes.

• Training individual classifiers in different subspaces seems 
to lead to substantially better improvements compared to 
classifiers operating in the same subspace.

• Besides the above three rules, other alternatives are also 
possible, such as to use the median value of the outputs of 
individual classifiers.
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The Boosting Approach
The origins: Is it possible a weak learning algorithm (one 
that performs slightly better than a random guessing) to be 
boosted into a strong algorithm? (Villiant 1984).

The procedure to achieve it:

• Adopt a weak classifier known as the base classifier.

• Employing the base classifier, design a series of 
classifiers, in a hierarchical fashion, each time employing 
a different weighting of the training samples. Emphasis in 
the weighting is given on the hardest samples, i.e., the 
ones that keep “failing”.

• Combine the hierarchically designed classifiers by a 
weighted average procedure.
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The AdaBoost Algorithm.
Construct an optimally designed classifier of the form:

where:

where             denotes the base classifier that returns a 
binary class label:

is a parameter vector.
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• The essence of the method.
Design the series of classifiers:

The parameter vectors       

are optimally computed so as:
– To minimize the error rate on the training set.
– Each time, the training samples are re-weighted so that the 

weight of each sample depends on its history. Hard
samples that “insist” on failing to be predicted correctly, by 
the previously designed classifiers, are more  heavily 
weighted.

( ) ( ) ( )kxxx ϑϕϑϕϑϕ ; ..., ,; ,; 21
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• Updating the weights for each sample

– Zm is a normalizing factor common for all samples.

–

where Pm<0.5 (by assumption) is the error rate of the 
optimal classifier             at stage m. Thus αm>0.

– The term:

takes a large value if                  (wrong 
classification) and a small value in the case of correct 
classification

– The update equation is of a multiplicative nature. That 
is, successive large values of weights (hard samples) 
result in larger weight for the next iteration
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• The algorithm
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Remarks:
• Training error rate tends to zero after a few iterations. 

The test error levels to some value.

• AdaBoost is greedy in reducing the margin that samples 
leave from the decision surface.
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RationaleRationale

No Free Lunch thm: There is no algorithm that is always the most accurate
Generate a group of base-learners which when combined has higher 
accuracy
Different learners use different

Algorithms
Hyperparameters
Representations (Modalities)
Training sets
Subproblems
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VotingVoting

Linear combination

Classification
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Bayesian perspective:

If dj are iid 

Bias does not change, variance decreases by L
Average over randomness
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Full code L=2(K-1)-1

With reasonable L, find W such that the Hamming distance btw rows and 
columns are maximized.
Voting scheme

Subproblems may be more difficult than one-per-K
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Bagging Bagging 

Use bootstrapping to generate L training sets and train one base-
learner with each (Breiman, 1996)
Use voting (Average or median with regression)
Unstable algorithms profit from bagging
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AdaBoostAdaBoost

Generate a 
sequence of base-
learners each 
focusing on 
previous one’s 
errors
(Freund and 
Schapire, 1996)



93

Mixture of ExpertsMixture of Experts

Voting where weights are input-dependent (gating)

(Jacobs et al., 1991)
Experts or gating 
can be nonlinear
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StackingStacking

Combiner f () is another 
learner (Wolpert, 1992)
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CascadingCascading

Use dj only if preceding 
ones are not confident

Cascade learners in order 
of complexity



96

ReferênciasReferências

Teodoridis, koutrombas (slides, book)

Andrew Moore (slides)

Alpaydin (slides, book)


