
DATA SCIENCE CONTINUUM
FROM FOUNDATIONS TO PRACTICES

F.A.N. VERRI

April 15, 2024

DATA SCIENCE CONTINUUM
FROM FOUNDATIONS TO PRACTICES

FILIPE A. N. VERRI

WIP

Disclaimer: This version is a work in progress. Many parts of the book have been drafted
with the help of GitHub Copilot and may not be revised yet by the author. The author is
not responsible for any misinformation contained in this book.

Book cover image was created with the assistance of Gemini and DALL·E 2.

Scripture quotations are from The ESV® Bible (The Holy Bible, English Standard Ver-
sion®), copyright © 2001 by Crossway, a publishing ministry of Good News Publishers.
Used by permission. All rights reserved.

Data science continuum: from foundations to practices © 2023–2024 by Filipe A. N. Verri
is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International. To view
a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0.

https://github.com/features/copilot
https://gemini.google.com
https://openai.com/dall-e-2
http://creativecommons.org/licenses/by-nc-nd/4.0/

Contents

About this book vii

Course plan xi

1 Brief history of data science 1
1.1 The term “data science” 1
1.2 Timeline and historical markers 5

1.2.1 Timeline of data handling 6
1.2.2 Timeline of data analysis 14

2 Preliminaries 21
2.1 Algorithms and data structures 21

2.1.1 Algoritmic paradigms 21
2.1.2 Computational complexity 22
2.1.3 Data structures 22

2.2 Set theory . 23
2.2.1 Set operations 23

2.3 Linear algebra . 24
2.3.1 Operations . 24
2.3.2 Systems of linear equations 26
2.3.3 Eigenvalues and eigenvectors 26

2.4 Probability . 26
2.4.1 Random variables 27
2.4.2 Expectation and moments 28
2.4.3 Probability distributions 29
2.4.4 Permutations and combinations 30

3 Fundamental data concepts 31
3.1 Fundamental data theory 34

3.1.1 Phenomena . 35

iii

iv CONTENTS

3.1.2 Measuments . 36
3.1.3 Knowledge extraction 38

3.2 Structured data . 39
3.2.1 Database normalization 42
3.2.2 Tidy data . 46
3.2.3 Bridging normalization, tidyness, and data theory 52
3.2.4 Data semantics and interpretation 57

3.3 Unstructured data . 57

4 Data science project 59
4.1 CRISP-DM . 59
4.2 ZN approach . 60

4.2.1 Roles of the ZN approach 62
4.2.2 Processes of the ZN approach 63

4.3 Agile methodology . 63
4.4 SCRUM framework . 64
4.5 Our approach . 65

4.5.1 The roles of our approach 66
4.5.2 The principles of our approach 66

5 Statistical learning theory 69
5.1 Hypothesis and setup 70
5.2 The learning problem 71
5.3 ERM inductive principle 73
5.4 Consistency of learning processes 73

5.4.1 Definition of consistency 74
5.4.2 Nontrivial consistency 76

5.5 Rate of convergence of learning processes 76
5.6 Generalization ability of learning processes 76
5.7 Construction of learning machines 76

5.7.1 Data classification methods 76
5.7.2 Regression estimation methods 76

6 Data handling 77
6.1 Data handling operators 77

6.1.1 Filtering rows 79
6.1.2 Selecting columns 80
6.1.3 Mutating columns 81
6.1.4 Aggregating rows 82
6.1.5 Binding datasets 84
6.1.6 Joining datasets 85

6.1.7 Pivoting and unpivoting 85
6.1.8 An algebra for statistical transformations 86

6.2 Data handling pipeline 88
6.3 Data transformation . 90

6.3.1 Reshaping . 91
6.3.2 Type conversion 91
6.3.3 Normalization 92
6.3.4 Sampling . 93
6.3.5 Dimensionality reduction 93

6.4 Data cleaning . 94
6.4.1 Dealing with missing data 94
6.4.2 Dealing with invalid and inconsistent information 95
6.4.3 Outliers . 96

6.5 Data integration . 96

7 Machine learning tasks 99
7.1 Multiclass . 99
7.2 Manifold learning . 99
7.3 Recommender systems 99
7.4 Reinforcement learning 99

8 Model evaluation 101

9 Ethical and legal issues 103

Bibliography 105

About this book

I intend to make this book forever free and open-
source. You can find (and contribute to) the source
code at github.com/verri/dsp-book.

If you like this book, consider buying me a coffee at
buymeacoffee.com/verri. All donations are used to
improve this book, including editing and proofread-
ing.

If you find any typos, grammar errors, incompletema-
terial or have any suggestions, please open an issue at
github.com/verri/dsp-book/issues.

Students can found a printable version (A4 paper,
double-sided, short-edge spiral binding) of this book
at comp.ita.br/~verri/ds-book-print.

vii

https://github.com/verri/dsp-book
https://www.buymeacoffee.com/verri
https://github.com/verri/dsp-book/issues
https://comp.ita.br/~verri/ds-book-print

viii ABOUT THIS BOOK

This book comprises the lectures notes of the course PO-235 Data
Science Project. I hope someday it becomes an actual book. For now,
bewaremany typos, grammar errors, ugly typesetting, disconnectedma-
terial, etc.

Also, it is important to highlight that:

• This is not a Machine Learning book, and I do not intend to ex-
plain how specific ML algorithms work.

• This contains some kind of introductory material on data science.
Although I introduce the fundamental concepts, I expect youhave
strong mathematical and statistics background.

• An artificial constraint I have imposed in the material (for the
sake of the course) is that I only consider predictivemethods, more
specifically inductive ones. I not address topics such as clustering,
association-rules mining, transductive learning, anomaly detec-
tion, time series forecasting, reinforced learning, etc.

I have decided to work on this material because the books I like on
data science are either

• too broad and too shallow, in the sense they hidemanymathemat-
ical foundations and focus on just explaining what data science is
and where it is applied;

• too tool-centric, in the sense that they focus only on a specific tool-
box or programming language; or

• too machine-learning-y, exposing many machine learning algo-
rithms and missing the foundations of learning.

So…, I expect my approach on the subject provide:

• awareness of all steps in a data science project;

• deeper focus (than most books) on data transformation, describ-
ing the semantics of dataset operators instead of restraining our-
selves with a specific tool;

• deeper focus (than most books) on why machine learning works,
increasing awareness of its pitfalls and limitations;

• deeper focus (than most books) on correct evaluation and valida-
tion (pre-deployment) of machine learning models.

ix

This book covers the following material:

• Brief history of data science.

• Background topics.

• Fundamental data concepts.

• Stages in a data science project.

• Data Infrastructure.

• Data integration from multiple sources.

• Data engineering and shaping.

• Inductive learning and principles of statistical learning theory.

• Application of Machine Learning models in real-world problems.

• Experimental planning for data science.

• Model evaluation and Bayesian analysis.

• Documentation and deployment.

• Ethical and legal issues in data science.

• Privacy-preserving computational approaches.

Course plan

In the following, I present the course plan for PO-235 and CMC-16.
Any questions about the classes should be sent via Google Class-

room. If your question is of general interest, please use themain stream.
If your question is personal and about a specific assignment or grade,
please use the private stream.

xi

PO-235 Data science project
Course plan (2024)

Prof. Filipe A. N. Verri

Important: Only graduate students are allowed to take this course.

Number of students: Approx. 20

Course load: 3–0–0–4

Requirements: Advanced programming skills, strong statistics back-
ground, and beginner level machine learning skills.

Course program: Brief history of data science. Fundamental data
concepts. Stages in a Data Science project. Data Infrastructure. Data
integration from multiple sources. Data engineering and shaping. In-
ductive learning and principles of statistical learning theory. Applica-
tion of machine learning models in real-world problems. Experimen-
tal planning for data science. Model evaluation and Bayesian analysis.
Documentation and deployment. Ethical and legal issues in data sci-
ence. Privacy-preserving computational approaches.

Goals: Providing the theoretical background and the practical con-
cepts to develop an end-to-end data science project for an inductive task.

Teaching methodology: Expository classes in common classroom,
using whiteboard, slide presentations, coding examples, books and sci-
entific papers. Supplementary didactic materials will be available in
Google Classroom. The development of the case study will happen dur-
inghome studyhours, including programming and scientific paperwrit-
ing. All classes will be given in English. Students are encouraged to ask
questions in English, but Portuguese is also allowed. All written and
oral assignments must be in English.

Grading: Two individual written tests in the 1st (𝑇1 and 𝑇2) and an-
other in the 2nd quarter (𝑇3). Also, a group activity that includeswritting
a scientific paper, developing a data science product, and a 30 minutes
presentation (𝐿).

Final grades will be calculated as

1st Q = √𝑇1𝑇2, 2nd Q = √𝑇3𝐿, Exam = 𝐿.

Case study: Exactly 6 groups will be formed. Each group will be re-
sponsible for a case study. Students must choose a real-world problem
and develop a data science project, including data collection, data trans-
formation, inductive learning, validation, documentation, and deploy-
ment. The results must be presented in a scientific paper format and a
30 minutes presentation. The trained models must be incorporated in
a data science product, such as a web application, a mobile application,
or a web service.

Bibliography:

• N. Zumel and J. Mount (2019). Practical Data Science with R.
2nd ed. Manning.

• H. Wickham, M. Çetinkaya-Rundel, and G. Grolemund (2023). R
for Data Science: Import, Tidy, Transform, Visualize, and Model
Data. 2nd ed. O’Reilly Media.

• J. D. Kelleher and B. Tierney (2018). Data science. The MIT Press.

The first twobooks (Zumel andMount;Wickham, Çetinkaya-Rundel,
and Grolemund) are available online for free.

Any required extra material will be made available in Google Class-
room.

Calendar: The expected schedule is presented below.

1st Quarter
Week Topics

1 Brief history of data science (chapter 1)
Preliminaries (chapter 2)

2 Written test

3 Fundamental data concepts (chapter 3)
Stages in a data science project

4 Inductive learning and statistical learning theory5
6 Data infrastructure and data integration from multiple sources
7 Data engineering and shaping
8 Written test

2nd Quarter
Week Topics
1 Application of machine learning models in real-world problems2
3 Experimental planning for data science4
5 Model evaluation and Bayesian analysis6
7 Written test

8
Documentation and deployment
Ethical and legal issues in data science
Privacy-preserving computational approaches

Case studies will be presented during exam weeks. At most 3 case
studies will be presented per day, with 30 minutes for each presentation
and 20 minutes for questions.

CMC-16 Data science practices
Course plan (2024)

Prof. Filipe A. N. Verri

Important: Only ITA’s undergraduate students are allowed to take
this course.

Number of students: Approx. 20 (no more than 40 students)

Course load: 2–0–1–5

Requirements: CMC-13 or CMC-15

Course program: Brief history of Data Science. Stages in a Data Sci-
ence project. Tidy Data. Data integration from multiple sources. Data
engineering and shaping. Inductive learning and statistical learning
theory. Experimental planning for Data Science. Model evaluation and
BayesianAnalysis. Documentation anddeployment. Privacy-preserving
computational approaches.

Goals: Further studying the practical aspects of Data Science (in rela-
tion to CMC-13) and providing the mathematical foundations to ensure
the correct usage of Data Science techniques.

The specific goals are:

• Understanding the steps andpeople involved inData Science projects;

• Developing an end-to-end case study, including data collection,
data transformation, inductive learning, validation, documenta-
tion, and deployment; and

• Critically evaluate the results and implications of the case study.

Teaching methodology: Expository classes in common classroom,
using whiteboard, slide presentations, coding examples, books and sci-
entific papers. Supplementary didactic materials will be available in
Google Classroom. The development of the case study will happen dur-
ing laboratory classes and home study hours, including programming
and writing essays.

Grading: One individual written test in the 1st and another in the 2nd
quarter. Essay and oral presentation about the case study (in groups) for
the final exam.

Case study: Exactly 6 groups will be formed. Each group will be re-
sponsible for a case study. Students must choose a real-world problem
and develop a data science project, including data collection, data trans-
formation, inductive learning, validation, documentation, and deploy-
ment. The results must be presented in a short essay (max. 3 pages) and
a 30 minutes presentation. The trained models must be incorporated in
a data science product, such as a web application, a mobile application,
or a web service.

Bibliography:

• NinaZumel and JohnMount. PracticalData SciencewithR.Man-
ning, 2nd Edition, 2019.

• HadleyWickham and Garret Grolemund, R for Data Science: Im-
port, Tidy, Transform, Visualize, andModelData. O’ReillyMedia,
2017.

• John D. Kelleher and Brendan Tierney. Data Science, MIT Press,
2018.

The first two books (Zumel and Mount, and Wickham and Grole-
mund) are available online for free.

Recommended reading:

• In-progress textbook at comp.ita.br/~verri/ds-book.

• V. N. Vapnik (1999a). “An overview of statistical learning theory”.
In: IEEE Transactions on Neural Networks 10.5, pp. 988–999. doi:
10.1109/72.788640.

• A. Benavoli et al. (2017). “Time for a Change: a Tutorial for Com-
paring Multiple Classifiers Through Bayesian Analysis”. In: Jour-
nal of Machine Learning Research 18.77, pp. 1–36. url: http://
jmlr.org/papers/v18/16-305.html.

Any extra material will be made available in Google Classroom.

https://comp.ita.br/~verri/ds-book
https://doi.org/10.1109/72.788640
http://jmlr.org/papers/v18/16-305.html
http://jmlr.org/papers/v18/16-305.html

Calendar: The expected schedule is presented below.

1st Quarter
Week Topics
1 Brief history of Data Science and CMC-13 review
2 Stages in a Data Science project
3 Tidy Data and data integration from multiple sources
4 Data engineering and shaping
5 Inductive learning and statistical learning theory6
7 Case study discussion and definitions
8 Written test

2nd Quarter
Week Topics
1 Experimental planning for Data Science
2 Model evaluation
3 Bayesian Analysis
4 Documentation and deployment
5 Privacy-preserving computational approaches
6 Written test
7 Presentations and discussions8

1
Brief history of data science

“Begin at the beginning,” the King said gravely, “and go on till
you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

There are many points-of-view about the beginning of data science. For
the sake of contextualization, I separate the topic in two approaches: the
history of the term itself and a broad timeline of data-driven sciences
highlighting the important figures in each age.

I believe that the history of the term is important to understand the
context of the discipline. Also, studying themain facts and figures in the
history of data-driven sciences is important to understand the evolution
of the field and hopefully to guide us to evolve it further.

1.1 The term “data science”

The term data science is recent and has been used to label rather dif-
ferent fields of study. In the following, I emphasize the history of a few
notable usage of the term.

PeterNaur (1928 – 2016) The term “data science” itself was coined in
the 1960s by Peter Naur (/naʊə/). Naur was a Danish computer scientist
and mathematician who made significant contributions to the field of
computer science, including his work on the development of program-

1

2 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Chapter remarks

Context

• The term “data science” is recent and has been used to label
rather different fields.

• The history of data-driven sciences is long and rich.

Objectives

• Understand the history of the term “data science.”

• Understand the history of data-driven sciences.

Takeways

• There is no consensus on the definition of data science.

• There is enough evidence to support data science as a new
science.

ming languages1. His ideas and concepts laid the groundwork for the
way we think about programming and data processing today.

Naur disliked the term computer science and suggested it be called
datalogy or data science. In the 1960s, the subject was practised in Den-
mark under PeterNaur’s termdatalogy, whichmeans the science of data
and data processes.

He coined this term to emphasize the importance of data as a fun-
damental component of computer science and to encourage a broader
perspective on the field that included data-related aspects. At that time,
the fieldwas primarily centered onprogramming techniques, butNaur’s
concept broadened the scope to recognize the intrinsic role of data in
computation.

In his book2, “Concise Survey of Computer Methods”, he parts from

1He is best remembered as a contributor, with John Backus, to the Backus–Naur form
(BNF) notation used in describing the syntax for most programming languages.

2Peter Naur: Concise Survey of Computer Methods, 397 p. Studentlitteratur, Lund,

1.1. THE TERM “DATA SCIENCE” 3

Figure 1.1: Naur’s view of data science.

computer science domain expertise

data science

For him, data science studies the techniques to deal with data, but
he delegates the meaning of data to other fields.

Slide 1.1: Peter Naur

• Danish computer scientist and mathematician.

• Coined the term “data science” in the 1960s.

• Proposed the term “datalogy” as an alternative to computer
science.

the concept that data is “a representation of facts or ideas in a formalised
manner capable of being communicated or manipulated by some pro-
cess.”3 Note however that his view of the science only “deals with data
[…]while the relation of data towhat they represent is delegated to other
fields and sciences.”

William Cleveland (born 1943) In 2001, a prominent statistician
used the term “data science” in his work to describe a new discipline
that comes from his “plan to enlarge the major areas of technical work

Sweden, ISBN 91-44-07881-1, 1974. http://www.naur.com/Conc.Surv.html
3I. H. Gould (ed.): ‘IFIP guide to concepts and terms in data processing’, North-

Holland Publ. Co., Amsterdam, 1971.

http://www.naur.com/Conc.Surv.html

4 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Figure 1.2: Cleveland’s view of data science.

statistics

domain expertise

computer science

data science

For him, data science is the “modern” statistics, where it is en-
larged by computer science and domain expertise.

of the field of statistics4.” In 2014, that work was republished5. He ad-
vocates the expansion of statistics beyond theory into technical areas,
significantly changing statistics. Thus, it warranted a new name.

Slide 1.2: William Cleveland

• American statistician.

• Proposed the discipline “data science” in 2001.

• Proposed the term “data science” as the new name for ex-
pansion of statistics.

As a result, William Swain Cleveland II is credited to define data
science as it is most used today. He is a highly influential figure in the
fields of statistics, machine learning, data visualization, data analysis

4W. S. Cleveland. Data Science: An Action Plan for Expanding the Technical Areas
of the Field of Statistics. ISI Review, 69:21–26, 2001.

5W. S. Cleveland. Data Science: An Action Plan for the Field of Statistics. Statistical
Analysis and Data Mining, 7:414–417, 2014. reprinting of 2001 article in ISI Review, Vol
69.

1.2. TIMELINE AND HISTORICAL MARKERS 5

formultidisciplinary studies, and high performance computing for deep
data analysis.

Buzzwordor anewscience? Be aware that literature has no consen-
sus on the definition of data science, and it is still considered by some
to be a buzzword6.

Most of the usages of the term in literature and in the media are
either a rough reference to a set of data-driven techniques or a market-
ing strategy. Naur (fig. 1.1) and Cleveland (fig. 1.2) are among the few
that try to carefully define the term. However, both of them do not see
data science as an independent field of study, but an enlarged scope of
an existing science. I disagree; the social and economical demand for
data-driven solutions led to an evolution in our understanding of the
challenges we are facing. As a result, we see many “data scientist” be-
ing hired and many “data science degrees” programs emerging.

In chapter 3, I dare to provide a (yet another) definition for the term.
I argue that its object of study can be precisely established to support it
as a new science.

Slide 1.3: A new science

• Both Naur and Cleveland do not see data science as an in-
dependent field of study.

• I argue that data science is not a buzzword.

• Our social and economical reality demands a new science.

1.2 Timeline and historical markers
Kelleher and Tierney (2018) provides an interesting time line of data-
driven methods and influential figures in the field. I reproduce it here
with some changes, including some omissions and additions. On the
subject of data analysis, I include some remarks fromV.N.Vapnik (1999b).

I first address data handling—which I include data sources, collec-
tion, organization, storage, and transformation—, and then data analy-
sis and knowledge extraction.

6Press, Gil. ”Data Science: What’s The Half-Life of a Buzzword?”.
Forbes. Available at https://www.forbes.com/sites/gilpress/2013/08/19/
data-science-whats-the-half-life-of-a-buzzword/

https://www.forbes.com/sites/gilpress/2013/08/19/data-science-whats-the-half-life-of-a-buzzword/
https://www.forbes.com/sites/gilpress/2013/08/19/data-science-whats-the-half-life-of-a-buzzword/

6 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

1.2.1 Timeline of data handling
The importance of collecting and organizing data goes without saying.
Data fuels analysis and decision making. In the following, I present
some of the most important milestones in the history of data handling.

Figure 1.3: Timeline of the ages of data handling.

Pre-digital Age

3,800 BC – 18th c.

Digital Age

1890 – 1960

Formal Age

1970s

Integrated Age

1980 – 1990

Ubiquitous Age

2000 – present

Figure 1.3 illutrates the timeline.

Pre-digital age

We can consider the earliest records of data collection to be the notches
on sticks and bones to keep tracking of passing of time. The Lebombo
bone, a baboon fibulawithnotches, is probably the earliest knownmath-
ematical object. It was found in the Lebombo Mountains located be-
tween South Africa and Eswatini. They estimate it is more than 40,000
years old. It is conjectured to be a tally stick, but its exact purpose is
unknown. Its 29 notches suggests that may have been used as a lunar
phase counter. However, since it is broken at one end, the 29 notches
may or may not be the total number7.

Another important milestone in the history of data collection is the
record of demographic data. One of first known census was conducted
in 3,800 BC in the Babylonian Empire. It was ordered to assess the pop-
ulation and resources of his empire. Records were stored on clay tiles8.

Since the early forms of writing, humanity abilities to record events
and information increased significantly. The first knownwritten records
date back to around 3,500 BC, the Sumerian archaic (pre-cuneiform)
writing. This writing system was used to represent commodities using
clay tokens and to record transactions9.

7P. B. Beaumont and R. G. Bednarik (2013). In: Rock Art Research 30.1, pp. 33–54.
url: https://search.informit.org/doi/10.3316/informit.488018706238392.

8C. G. Grajalez et al. (2013). “Great moments in statistics”. In: Significance 10.6,
pp. 21–28. doi: 10.1111/j.1740-9713.2013.00706.x.

9G. Ifrah (1998). The Universal History of Numbers, from Prehistory to the Invention of
the Computer. First published in French, 1994. London: Harvill. isbn: 1 86046 324 x.

https://search.informit.org/doi/10.3316/informit.488018706238392
https://doi.org/10.1111/j.1740-9713.2013.00706.x

1.2. TIMELINE AND HISTORICAL MARKERS 7

“Data storage” was also a challenge. Some important devices that
increased our capacity to register textual information are the Sumerian
clay tablets (3,500 BC), the Egyptian papyrus (3,000 BC), the Greek al-
phabet (800 BC), the Roman wax tablets (100 BC), the codex (100 AD),
the Chinese paper (200 AD), the printing press (1440), the typewriter
(1868).

Besides those improvements in unstructured data storage, at least
in the Western and Middle Eastern world, there are no significant ad-
vances in structured data collection until the 19th century. (A Eastern
timeline research is pending.)

I consider a major influential figure in the history of data collection
to be Florence Nightingale (1820 – 1910). She was a passionate statis-
tician and probably the first person to use statistics to influence pub-
lic and official opinion. The meticulous records she kept during the
CrimeanWar (1853 – 1856) were the evidence that saved lives. She was
also the first to use statistical graphics to present data in a way that was
easy to understand. She is credited with developing a form of the pie
chart now known as the polar area diagram. She also reformed health-
care in the United Kingdom and is considered the founder of modern
nursing10.

Digital age

In the modern period, several devices were developed to store digital11
information. One particular device that is important for data collection
is the punched card. It is a piece of stiff paper that contains digital in-
formation represented by the presence or absence of holes in predefined
positions. The information can be read by amechanical or electrical de-
vice called a card reader. The earliest famous usage of punched cards
was by Basile Bouchon (1725) to control looms. Most of the advances
until the 1880s were about the automation of machines (data process-
ing) using hand-punched cards, and not particularly specialized for data
collection.

However, the 1890 census in the United States was the first to use
machine-readable punched cards to tabulate data. Processing 1880 cen-
sus data took eight years, so the Census Bureau contracted Herman

10C. G. Grajalez et al. (2013). “Great moments in statistics”. In: Significance 10.6,
pp. 21–28. doi: 10.1111/j.1740-9713.2013.00706.x.

11Digital means the representation of information in (finite) discrete form. The term
comes from the Latin digitus, meaning finger, because it is the natural way to count using
fingers.

https://doi.org/10.1111/j.1740-9713.2013.00706.x

8 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Slide 1.4: Pre-digital age

• Babylonian census (3,800 BC)

• Sumerian archaic (pre-cuneiform) writing (3,500 BC)

• Egyptian papyrus (3,000 BC)

• Phoenician alphabet (1,000 BC)

• Greek alphabet (800 BC)

• Roman wax tablets (100 BC)

• Codex (100 AD)

• Chinese paper (200 AD)

• Printing press (1440)

• Typewriter (1868)

• Florence Nightingale (1820 – 1910)

Hollerith (1860 – 1929) to design and build a tabulating machine. He
founded the TabulatingMachine Company in 1896, which later merged
with other companies to become International Business Machines Cor-
poration (IBM) in 1924. Later models of the tabulating machine were
widely used for business applications such as accounting and inventory
control. Punched card technology remained a prevalent method of data
processing for several decades until more advanced electronic comput-
ers were developed in the mid-20th century.

The invention of the digital computer is responsible for a revolution
in data handling. The amount of information we can capture and store
increased exponentially. ENIAC (1945) was the first electronic general-
purpose computer. It was Turing-complete, digital, and capable of being
reprogrammed to solve a full range of computing problems. It had 20
words of internal memory, each capable of storing a 10-digit decimal
integer number. Programs and data were entered by setting switches
and inserting punched cards.

For the 1950 census, the United States Census Bureau used the UNI-
VAC I (Universal Automatic Computer I), the first commercially pro-

1.2. TIMELINE AND HISTORICAL MARKERS 9

Slide 1.5: Florence Nightingale

• Passionate statistician.

• First person to use statistics to influence public and official
opinion.

• Organized data from garden fruits and vegetables into nu-
merical tables at the age of 9.

• At 20 she was receiving two-hour lessons from a
Cambridge-trained mathematician.

• She found the sight of a long column of figures “perfectly
reviving.”

• She went out to the Crimean War, to Scutari in Turkey, in
1854.

• She found that not even the numbers of soldiers entering
the hospitals, or leaving them – alive or dead – was known.

• From the first she kept meticulous records.

• The data she collected was the evidence that saved lives.

• She was the first to use statistical graphics to present data
in a way that was easy to understand.

• She is credited with developing a form of the pie chart now
known as the polar area diagram.

• She reformed healthcare in theUnited Kingdom and is con-
sidered the founder of modern nursing.

duced computer in the United States12.
It goes without saying that digital computers have become much

more powerful and sophisticated since then. The data collection process
has been easily automated and scaled to a level that was unimaginable
before. However, “where” storing data is not the only challenge. “How”
to store data is also a challenge. The next period of history addresses this

12Read more in https://www.census.gov/history/www/innovations/.

https://www.census.gov/history/www/innovations/

10 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

issue.

Slide 1.6: Digital age

• Punched card (1725)

• 1890 census and Hollerith’s tabulating machine (1890)

• ENIAC (1945)

• UNIVAC I used by the United Census Bureau (1950)

Formal age

In 1970, Edgar Frank Codd (1923 – 2003) published a paper entitled “A
Relational Model of Data for Large Shared Data Banks”13. In this paper,
he introduced the concept of a relational model for database manage-
ment provide more details.

His work was a breakthrough in the field of data management. The
standardization of relational databases led to the development of Struc-
tured Query Language (SQL) in 1974. SQL is a domain-specific lan-
guage used in programming and designed for managing data held in a
relational database management system (RDBMS).

As a result, a new challenge rapidly emerged: how to aggregate data
from different sources. Once data is stored in a relational database, it is
easy to query andmanage it. However, data is usually stored in different
databases, and it is not always possible to combine them.

Integrated age

The solution to this problemwas the development of the Extract, Trans-
form, Load (ETL) process. ETL is a process in data warehousing re-
sponsible for extracting data from several sources, transforming it into
a format that can be analyzed, and loading it into a data warehouse.

The concept of data warehousing dates back to the late 1980s when
IBM researchers Barry Devlin and Paul Murphy developed the ”busi-
ness data warehouse”

13E. F. Codd (1970). “A Relational Model of Data for Large Shared Data Banks”. In:
Commun. ACM 13.6, pp. 377–387. issn: 0001-0782. doi: 10.1145/362384.362685.

https://doi.org/10.1145/362384.362685

1.2. TIMELINE AND HISTORICAL MARKERS 11

Slide 1.7: Edgar Frank Codd

• British computer scientist

• Introduced the concept of a relational model for database
management

• Standardized relational databases

• Led the development of Structured Query Language (SQL)

Two major figures in the history of ETL are Ralph Kimball and Bill
Inmon. Although they differ in their approaches, they both agree that
data warehousing is the foundation for business intelligence (BI) and
analytics, and that data warehouses should be designed to be easy to
understand and fast to query for business users.

A famous debate between Kimball and Inmon is the top-down ver-
sus bottom-up approach to data warehousing. Inmon’s approach is top-
down, where the data warehouse is designed first and then the data
marts14 are created from the data warehouse. Kimball’s approach is
bottom-up, where the data marts are created first and then the data
warehouse is created from the data marts.

Slide 1.8: Ralph Kimball

• American computer scientist.

• Developed the bottom-up approach to data warehousing.

• From available data marts, the data warehouse is created.

One of the earliest andmost famous case studies of the implementa-
tion of a data warehouse is that ofWalmart. In the early 1990s, Walmart
faced the challenge of managing and analyzing vast amounts of data
from its stores across the United States. The company needed a solu-
tion that would enable comprehensive reporting and analysis to support
decision-making processes.

14A data mart is a specialized subset of a data warehouse that is designed to serve the
needs of a specific business unit, department, or functional area within an organization.

12 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Slide 1.9: Bill Inmon

• American computer scientist.

• Developed the top-down approach to data warehousing.

• Design the data warehouse first and then the data marts are
created from the data warehouse.

Ubiquitous age

The last and current period of history is the ubiquitous age. It is char-
acterized by the proliferation of data sources.

The ubiquity of data generation and the evolution of data-centric
technologies have been made possible by a multitude of figures across
various domains.

• Tim Berners-Lee, credited with inventing the World Wide Web,
laid the foundation for the massive data flow on the internet.

• Vinton Cerf and Robert Kahn, often referred to as the “Fathers of
the Internet,” developed the TCP/IP protocols, which are funda-
mental to internet communication.

• Steve Jobs and Steve Wozniak (Apple Inc.) and Bill Gates (Mi-
crosoft Corporation), the introduction of personal computers, lead-
ing to the democratization of data generation.

• Mark Zuckerberg, the co-founder of Facebook, played a crucial
role in the rise of social media and the generation of vast amounts
of user-generated content.

• Larry Page and Sergey Brin, the founders of Google, transformed
how we access and search for information.

• Elon Musk and Tesla, the rise of the Internet of Things (IoT) and
connected devices.

In terms of data handling, this change in the data landscape has
brought about the development of new technologies and techniques for
data storage andprocessing. Especially the development ofNoSQLdatabases
and distributed computing frameworks.

1.2. TIMELINE AND HISTORICAL MARKERS 13

NoSQL databases are non-relational databases that can store and
process large volumes of unstructured, semi-structured, and structured
data. They are highly scalable and flexible, making them ideal for big
data applications.

Slide 1.10: The V’s of big data

• Volume: The amount of data generated is massive

• Velocity: The speed at which data is generated is high

• Variety: The types of data generated are diverse

• Veracity: The quality of data generated is questionable

• Value: The value of data generated is high

Once massive amounts of unstructured data became available, the
need for new data processing techniques arose. The development of
distributed computing frameworks such asApacheHadoop andApache
Spark enabled the processing ofmassive amounts of data in a distributed
manner.

DougCutting andMikeCafarella, the developers ofApacheHadoop,
revolutionized big data proposed the Hadoop Distributed File System
(HDFS) and MapReduce, which are the cornerstones of the Hadoop
framework, in 2006. Hadoop’s distributed storage and processing capa-
bilities enabled organizations to handle and analyze massive volumes
of data.

Currently, Google holds a patent for MapReduce15. However, their
framework inherits from the architeture proposed inHillis (1985) thesis.

MapReduce is not particularly novel, but its simplicity and scalabil-
ity made it popular.

Nowadays, another important topic is Internet of Things (IoT). IoT
is a system of interrelated computing devices that communicate with
each other over the internet. The devices can be anything from cell-
phones, coffee makers, washing machines, headphones, lamps, wear-
able devices, and almost anything else you can think of. IoT increased
the challenges of data handling, especially in terms of data storage and
processing.

15http://static.googleusercontent.com/media/research.google.com/es/us/archive/
mapreduce-osdi04.pdf

http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf

14 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

1.2.2 Timeline of data analysis
The way we think about data and knowledge extraction has evolved sig-
nificantly over the years. In the following, I present some of the most
important milestones in the history of data analysis.

Summary statistics

The earliest known records of systematic data analysis date back to the
first censuses. The term statistics itself refer to the analysis of data about
the state, including demographics and economics. That early (and sim-
plest) form of statistical analysis is called summary statistics, which con-
sists of describing data in terms of its central tendencies (e.g. arithmetic
mean) e variability (e.g. range).

Probability advent

However, after the seventeenth century, the foundations ofmodernprob-
ability theory were laid out. Important figures for developing the prob-
ability theory are Blaise Pascal (1623 – 1662), Pierre de Fermat (1607 –
1665), Christiaan Huygens (1629 – 1695), and Jacob Bernoulli (1655 –
1705).

The foundation methods brought to life the field of statistical infer-
ence. In the following years, important results were achieved.

Bayes’ rule Reverend Thomas Bayes (1701 – 1761) was an English
statistician, philosopher, and presbyterian minister. He is known for
formulating a specific case of the theorem that bears his name: Bayes’
theorem. The theorem is used to calculate conditional probabilities us-
ing an algorithm (his Proposition 9, published in 1763) that uses evi-
dence to calculate limits on an unknown parameter.

The Bayes’ rule is the foundation of learning from evidence, once it
allows us to calculate the probability of an event based on prior knowl-
edge of conditions that might be related to the event. Classifiers based
on Naïve Bayes — the application of Bayes’ theorem with strong in-
dependence assumptions between known variables — is likely to have
been used since the second half of the eighteenth century.

Gauss’ method of least squares Johann Carl Friedrich Gauss (1777
– 1855) was a German mathematician and physicist who made signif-
icant contributions to many fields in mathematics and sciences. Circa

1.2. TIMELINE AND HISTORICAL MARKERS 15

1794, he developed the method of least squares for calculating the orbit
of Ceres to minimize the impact of measurement error16.

Playfair’s data visualization William Playfair (1759 – 1823) was a
secret agent on behalf of Great Britain during its war with France in the
1790s. He invented several types of diagram between 1780s and 1800s,
such as the line, area and bar chart of economic data, and the pie chart
and circle graph to show proportions.

Slide 1.11: Probability advent

• Foundations by Blaise Pascal, Pierre de Fermat, Christiaan
Huygens, Jacob Bernoulli, and others (17th century)

• Bayes’ rule by Thomas Bayes (1763)

• Gauss’ method of least squares by Johann Carl Friedrich
Gauss (1794)

• Playfair’s data visualization by William Playfair (1780s –
1800s)

Learning from data

In the twentieth century and beyond, new advances were made in the
field of statistics. The development of learning methods17 enabled the
development of new techniques for data analysis.

Fisher’s discriminant analysis In the 1930s, Ronald Fisher (1890 –
1962) developed discriminant analysis, whichwas considered a problem
of constructing a decision rule to assign a vector to one of two categories
using given probability distribution functions18.

See ?? for more details about the technique.

16The method was first published by Adrien-Marie Legendre (1752 – 1833) in 1805,
but Gauss claimed in 1809 that he had been using it since circa 1794.

17Vapnik uses the terminology learning machines.
18After, Rosenblatt’s work, however, it was used to solve inductive inference as well.

16 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Shannon’s information theory The field, that studies quantifica-
tion, storage and communication of information, was originally estab-
lished by the works of Harry Nyquist (1889 – 1976) and Ralph Hartley
(1888 – 1970) in the 1920s, and Claude Shannon (1916 – 2001) in the
1940s. Information theory broughtmany important concepts to the field
of data analysis, such as entropy, mutual information, and information
gain.

K-Nearest Neighbors In 1951, Evelyn Fix (1904 – 1965) and Joseph
Lawson Hodges Jr. (1922 – 2000) wrote a technical report entitled “Dis-
criminatoryAnalysis, NonparametricDiscrimination: ConsistencyProp-
erties.” In this paper, they proposed the k-nearest neighbors algorithm,
which is a non-parametric method used for classification and regres-
sion.

See ?? for more details about the technique.

Rosenblatt’s perceptron In the 1960s, FrankRosenblatt (1928 – 1971)
developed the perceptron, the first model of a learning machine. While
the idea of a mathematical neuron was not new, he was the first to de-
scribe the model as a program, showing the ability of the perceptron to
learn simple tasks such as the logical operations AND and OR.

See ?? for more details about the technique.

Hunt inducing trees In 1966, Hunt, Marin, and Stone’s book19 de-
scribed a way to induce decision trees from data. The algorithm is based
on the concept of information entropy and is a precursor of the Quin-
lan’s ID3 algorithm20 and its variations.

See ?? for more details about the technique.

Empirical risk minimization principle Although many learning
machines where developed until the 1960s, they did not advanced sig-
nificantly the understanding of the general problem of learning from
data. Between 1960s and 1986— before the backpropagation algorithm
was proposed —, the field of practical data analysis was basically stag-
nant. The main reason for that was the lack of a theoretical framework
to support the development of new learning machines.

19E. B. Hunt, J. Marin, and P. J. Stone (1966). Experiments in Induction. New York, NY,
USA: Academic Press.

20J. R. Quinlan (1986). “Induction of Decision Trees”. In: Machine Learning 1, pp. 81–
106. url: https://api.semanticscholar.org/CorpusID:13252401.

https://api.semanticscholar.org/CorpusID:13252401

1.2. TIMELINE AND HISTORICAL MARKERS 17

Slide 1.12: Learning from data (part I)

• Fisher’s discriminant analysis by Ronald Fisher (1930s)

• Shannon’s information theory by Claude Shannon (1940s)

• K-Nearest Neighbors by Evelyn Fix and Joseph Lawson
Hodges Jr. (1951)

• Rosenblatt’s perceptron by Frank Rosenblatt (1960s)

• Hunt inducing trees by John Ross Quinlan (1966)

However, these years were not completely unfruitful. As early as
1968, Vladimir Vapnik (1936 –) andAlexey Chervonenkis (1938 – 2014)
developed the foundamental concepts of VC entropy and VC dimension
for the data classification problems. As a result, a novel inductive prin-
ciple was proposed: the Empirical Risk Minimization (ERM) principle.
This principle is the foundation of statistical learning theory.

Resurgence of neural networks In 1986, researchers developed in-
dependently a method to optimize coefficients of a neural network21.
Themethod is called backpropagation and is the foundation of the resur-
gence of neural networks.

This rebirth of neural networks happened in a scenario very differ-
ent from the 1960s. The availability of data and computational power
fueled a new approach to the problem of learning from data. The new
approach preferred the use of simple algorithms and intuitive models
over theoretical models, fueling areas such as bioinspired computing
and evolutionary computation.

21Y. Le Cun (1986). “Learning Process in an Asymmetric Threshold Network”. In:
Disordered Systems and Biological Organization. Berlin, Heidelberg: Springer Berlin Hei-
delberg, pp. 233–240. isbn: 978-3-642-82657-3; D. E. Rumelhart, G. E. Hinton, and R. J.
Williams (1986). “Learning representations by back-propagating errors”. In: Nature
323.6088, pp. 533–536. doi: 10.1038/323533a0.

https://doi.org/10.1038/323533a0

18 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Ensembles Following thenewapproach, ensemblemethodswere de-
veloped. Based on ideas of boosting22 and bagging23, ensemblemethods
combinemultiple learningmachines to improve the performance of the
individual machines. The most famous ensemble methods are random
forests24.

Support vector machines In 1995, Cortes and V. Vapnik proposed
the support vectormachine (SVM) algorithm, a learningmachine based
on the VC theory and the ERM principle. Based on Cover’s theorem25,
they developed a method that finds the optimal hyperplane that sepa-
rates two classes of datawith themaximummargin in ahigh-dimensional
space. The resulting method led to practical and efficient learning ma-
chines.

Deep learning revolution Although the ideia of neural networks
with multiple layers were around since the 1960s, only in the late 2000s
the field of deep learning caught the attention of the scientific commu-
nity by achieving state-of-the-art results in computer vision and natural
language processing. Yoshua Bengio, Geoffrey Hinton and Yann LeCun
are recognized for their for conceptual and engineering breakthroughs
in the field, winning the 2018 Turing Award.

Generative deep models Nowadays, generative deep models are a
hot topic in machine learning. They are a class of statistical models that
can generate new data instances. They are used in unsupervised learn-
ing to discover hidden structures in unlabeled data (e.g. clustering),
and in supervised learning to generate new synthetic data instances.
Themost famous generativemodels are the generative transformers and
generative adversarial networks.

22R. E. Schapire (1990). “The strength of weak learnability”. In: Machine Learning 5.2,
pp. 197–227. doi: 10.1007/BF00116037.

23L. Breiman (1996). “Bagging predictors”. In: Machine Learning 24.2, pp. 123–140.
doi: 10.1007/BF00058655.

24T. K. Ho (1995). “Random decision forests”. In: Proceedings of 3rd International
Conference on Document Analysis and Recognition. Vol. 1, 278–282 vol.1. doi: 10.1109/
ICDAR.1995.598994.

25T. M. Cover (1965). “Geometrical and Statistical Properties of Systems of Linear In-
equalities with Applications in Pattern Recognition”. In: IEEE Transactions on Electronic
Computers EC-14.3, pp. 326–334. doi: 10.1109/PGEC.1965.264137.

https://doi.org/10.1007/BF00116037
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/PGEC.1965.264137

1.2. TIMELINE AND HISTORICAL MARKERS 19

LUSI learning theory In 2010s, Vapnik and Rauf Izmailov proposed
the Learning Using Statistical Invariants (LUSI) principle, which is an
extension of the statistical learning theory. The LUSI theory is based on
the concept of statistical invariants, which are properties of the data that
are preserved under transformations. The theory is the foundation of
the learning from intelligent teachers paradigm. They regard the LUSI
theory as the next step in the evolution of learning theory, calling it the
“complete statistical theory of learning”.

Slide 1.13: Learning from data (part II)

• Empirical risk minimization principle by Vladimir Vapnik
and Alexey Chervonenkis (1968)

• Resurgence of neural networks (1986)

• Ensembles (1990s)

• Support vector machines by Vladimir Vapnik and Corinna
Cortes (1995)

• Deep learning revolution (2000s)

• Generative models (2010s)

• LUSI learning theory by Vladimir Vapnik and Rauf Iz-
mailov (2010s)

2
Preliminaries

Maar ikmaak steeds wat ik nog niet kan omhet te leeren kun-
nen.
— Vincent van Gogh, The Complete Letters of Vincent Van

Gogh, Volume Three

Foundamental concepts in data science come from a variety of fields,
including mathematics, statistics, computer science, optimization the-
ory, and information theory. This chapter provides a brief overview of
the computational, mathematical and statistical concepts that are used
in the rest of the book.

2.1 Algorithms and data structures
Algorithms are step-by-step procedures for solving a problem. They are
used to manipulate data structures, which are ways of organizing data
to solve problems. They are realized in programming languages, which
are formal languages that can be used to express algorithms.

2.1.1 Algoritmic paradigms
Some techniques are used to solve a wide variety of problems. They are
called algorithmic paradigms. The most common ones are listed below.

Divide and conquer The problem is divided into smaller subprob-
lems that are solved recursively. The solutions to the subproblems are
then combined to give a solution to the original problem. Some example
algorithms are merge sort, quick sort, and binary search.

21

22 CHAPTER 2. PRELIMINARIES

Greedy algorithms The problem is solved with incremental steps,
each of which is locally optimal. The overall solution is not guaranteed
to be (but might be) optimal. Some example algorithms are Dijkstra’s
algorithm and Prim’s algorithm

Backtracking The problem is solved incrementally, one piece at a
time. If a piece does not fit, it is removed and replaced by another piece.
Some example algorithms are the naïve solutions for N-queens problem
and the Sudoku problem.

2.1.2 Computational complexity
The computational complexity of an algorithm is the amount of resources
it uses to run as a function of the size of the input. The most common
resources are time and space.

Usually, we are interested in the asymptotic complexity of an algo-
rithm, i.e. how the complexity grows as the size of the input grows. The
most common notation for asymptotic complexity is the Big-O notation.

Big-O notation Let 𝑓 and 𝑔 be functions from the set of natural num-
bers to the set of real numbers, i.e. 𝑓, 𝑔 ∶ ℕ → ℝ. We say that 𝑓 is 𝑂(𝑔)
if there exists a constant 𝑐 > 0 such that 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0,
where 𝑛0 is a natural number.

We can order functions by their asymptotic complexity. For exam-
ple, 𝑂(1) < 𝑂(log𝑛) < 𝑂(𝑛) < 𝑂(𝑛 log𝑛) < 𝑂(𝑛2) < 𝑂(2𝑛) < 𝑂(𝑛!).
The Big-O notation is used to describe the asymptotic complexity of al-
gorithms.

2.1.3 Data structures
Data structures are ways of organizing data to solve problems. Themost
common ones are listed below.

Arrays An array is a homogeneous collection of elements that are ac-
cessed by an integer index. The elements are usually stored in contigu-
ous memory locations.

Linked lists A linked list is a collection of elements called nodes.
Each node contains a value and a pointer to the next node in the list.
The first node is called the head, and the last node is called the tail. The
tail points to a null reference.

2.2. SET THEORY 23

Stacks A stack is a collection of elements that are accessed in a last-
in-first-out (LIFO) order. Elements are added to the top of the stack and
removed from the top of the stack.

Queues Aqueue is a collection of elements that are accessed in a first-
in-first-out (FIFO) order. Elements are added to the back of the queue
and removed from the front of the queue.

Trees A tree is a collection of nodes. Each node contains a value and
a list of references to its children. The first node is called the root. A
node with no children is called a leaf.

Graphs A graph is a collection of nodes. Each node contains a value
and a list of references to its neighbors; the references are called edges.
A graph can be directed or undirected. A graph is directed if the edges
have a direction.

Map A map is a collection of key-value pairs. The keys are unique,
and each key is associated with a value. The keys are used to access the
values.

2.2 Set theory
A set is a collection of elements. The elements of a set can be anything,
including other sets. The elements of a set are unordered, and each ele-
ment is unique. The most common notation for sets is the curly braces
notation, e.g. {1, 2, 3}.

2.2.1 Set operations
Union The union of two sets 𝐴 and 𝐵 is the set of elements that are in
𝐴 or 𝐵. It is denoted by 𝐴 ∪ 𝐵.

Intersection The intersection of two sets 𝐴 and 𝐵 is the set of ele-
ments that are in both 𝐴 and 𝐵. It is denoted by 𝐴 ∩ 𝐵.

Difference The difference of two sets 𝐴 and 𝐵 is the set of elements
that are in 𝐴 but not in 𝐵. It is denoted by 𝐴 ⧵ 𝐵.

Union and intersection are commutative, associative and distribu-
tive.

24 CHAPTER 2. PRELIMINARIES

Universe set The universe set is the set of all elements. It is denoted
by Ω.

Empty set The empty set is the set with no elements. It is denoted by
∅.

Complement The complement of a set 𝐴 is the set of elements that
are not in 𝐴. It is denoted by 𝐴𝑐 = Ω ⧵ 𝐴.

Inclusion Given sets 𝐴, 𝐵, and 𝐶, the following statements hold:
• Reflexity: 𝐴 ⊆ 𝐴;
• Antisymmetry: 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 if and only if 𝐴 = 𝐵;
• Transitivity: 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 implies 𝐴 ⊆ 𝐶.

2.3 Linear algebra
Vector A vector is an ordered collection of numbers. It is denoted by
a bold lowercase letter, e.g. v = [𝑣𝑖]𝑖=1,…,𝑛 is a vector of length 𝑛.

Matrix Amatrix is a rectangular collection of numbers. It is denoted
by an uppercase letter, e.g. 𝐴 = (𝑎𝑖𝑗)𝑖=1,…,𝑛; 𝑗=1,…,𝑚 is the matrix with
𝑛 rows and𝑚 columns.

2.3.1 Operations
Addition The sum of two vectors v andw is the vector v +w whose
𝑖-th entry is 𝑣𝑖+𝑤𝑖. The sum of twomatrices𝐴 and 𝐵 is thematrix𝐴+𝐵
whose 𝑖, 𝑗-th entry is 𝑎𝑖𝑗 + 𝑏𝑖𝑗 . (The same rules apply to subtraction.)

Scalar multiplication The product of a scalar 𝛼 and a vector v is the
vector 𝛼vwhose 𝑖-th entry is 𝛼𝑣𝑖. The product of a scalar 𝛼 and a matrix
𝐴 is the matrix 𝛼𝐴 whose 𝑖, 𝑗-th entry is 𝛼𝑎𝑖𝑗 .

Dot product The dot product of two vectors v andw is the scalar

v ⋅w =
𝑛
∑
𝑖=1

𝑣𝑖𝑤𝑖.

The dot product is also called the inner product.

2.3. LINEAR ALGEBRA 25

Matrix multiplication The product of two matrices 𝐴 and 𝐵 is the
matrix 𝐶 = 𝐴𝐵 whose 𝑖, 𝑗-th entry is

𝑐𝑖𝑗 =
𝑛
∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 .

Unless otherwise stated, we consider the vector v as a column matrix.

Transpose The transpose of a matrix 𝐴 is the matrix 𝐴𝑇 whose 𝑖, 𝑗-
th entry is the 𝑗, 𝑖-th entry of 𝐴. If 𝐴 is a square matrix, then 𝐴𝑇 is the
matrix obtained by reflecting 𝐴 along its main diagonal.

Determinant The determinant of a square matrix 𝐴 is a scalar that is
a measure of the (signed) volume of the parallelepiped spanned by the
columns of 𝐴. It is denoted by det(𝐴) or |𝐴|.

The determinant is nonzero if and only if the matrix is invertible
and the linear map represented by the matrix is an isomorphism – i.e.
it preserves the dimension of the vector space. The determinant of a
product of matrices is the product of their determinants.

Particularly, the determinant of a 2 × 2matrix (𝑎 𝑏
𝑐 𝑑) is

|||
𝑎 𝑏
𝑐 𝑑

||| = 𝑎𝑑 − 𝑏𝑐.

Inverse matrix An 𝑛× 𝑛matrix 𝐴 has an inverse 𝑛× 𝑛matrix 𝐴−1 if

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛,

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. If such a matrix exists, 𝐴 is said
invertible. A square matrix that is not invertible is called singular. A
square matrix with entries in a field is singular if and only if its deter-
minant is zero.

To calculate the inverse of a matrix, we can use the formula

𝐴−1 = 1
det(𝐴)adj(𝐴),

where adj(𝐴) is the adjugate (or adjoint) of 𝐴, i.e. the transpose of the
cofactor matrix of 𝐴.

The cofactor of the 𝑖, 𝑗-th entry of a matrix 𝐴 is the determinant of
the matrix obtained by removing the 𝑖-th row and the 𝑗-th column of 𝐴,
multiplied by (−1)𝑖+𝑗 .

26 CHAPTER 2. PRELIMINARIES

In the case of a 2 × 2matrix, the inverse is

(𝑎 𝑏
𝑐 𝑑)

−1
= 1
𝑎𝑑 − 𝑏𝑐 (

𝑑 −𝑏
−𝑐 𝑎) .

2.3.2 Systems of linear equations
A system of linear equations is a collection of linear equations that share
their unknowns. It is usually written in matrix form as 𝐴x = b, where
𝐴 is a matrix of constants, x is a vector of unknowns, and b is a vector
of constants.

The system has a unique solution if and only if the matrix 𝐴 is in-
vertible. The solution is x = 𝐴−1b.

2.3.3 Eigenvalues and eigenvectors
An eigenvalue of a square matrix 𝐴 is a scalar 𝜆 such that there exists a
non-zero vector v satisfying

𝐴v = 𝜆v. (2.1)

The vector v is called an eigenvector of 𝐴 corresponding to 𝜆.
The eigenvalues of a matrix are the roots of its characteristic poly-

nomial, i.e. the roots of the polynomial det(𝐴 − 𝜆𝐼) = 0, where 𝐼 is the
identity matrix.

2.4 Probability
The Kolmogorov axioms of probability are the foundation of probability
theory. They are

1. The probability of an event 𝐴 is a non-negative real number, i.e.
𝑃(𝐴) ≥ 0;

2. The probability of the sample space Ω is one, i.e. 𝑃(Ω) = 1; and

3. The probability of the union of disjoint events, 𝐴 ∩ 𝐵 = ∅, is the
sum of the probabilities of the events, i.e. 𝑃(𝐴∪𝐵) = 𝑃(𝐴)+𝑃(𝐵).

If 𝐴 and 𝐵 are not disjoint, then

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).

2.4. PROBABILITY 27

Joint probability The joint probability of two events 𝐴 and 𝐵 is the
probability that both events occur. It is denoted by 𝑃(𝐴, 𝐵) = 𝑃(𝐴 ∩ 𝐵).

Law of total probability The law of total probability states that if
𝐵1,… , 𝐵𝑛 are disjoint events such that ∪𝑛𝑖=1𝐵𝑖 = Ω, then for any event
𝐴, we have that

𝑃(𝐴) =
𝑛
∑
𝑖=1

𝑃(𝐴, 𝐵𝑖).

Conditional probability The conditional probability of an event 𝐴
given an event 𝐵 is the probability that 𝐴 occurs given that 𝐵 occurs. It
is denoted by 𝑃(𝐴 ∣ 𝐵).

Independence Two events𝐴 and𝐵 are independent if the probability
of 𝐴 given 𝐵 is the same as the probability of 𝐴, i.e. 𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴). It
is equivalent to 𝑃(𝐴, 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵).

Bayes’ rule Bayes’ rule is a formula that relates the conditional prob-
ability of an event 𝐴 given an event 𝐵 to the conditional probability of 𝐵
given 𝐴. It is

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐵 ∣ 𝐴) ⋅ 𝑃(𝐴)
𝑃(𝐵) . (2.2)

2.4.1 Random variables
A random variable is a function that maps the sample space Ω to the
real numbers. It is denoted by a capital letter, e.g. 𝑋 .

Formally, let 𝑋 ∶ Ω → 𝐸 be a random variable. The probability that
𝑋 takes on a value in a set 𝐴 ⊆ 𝐸 is

𝑃(𝑋 ∈ 𝐴) = 𝑃({𝜔 ∈ Ω ∶ 𝑋(𝜔) ∈ 𝐴}). (2.3)

If 𝐸 = ℝ, then 𝑋 is a continuous random variable. If 𝐸 = ℤ, then 𝑋
is a discrete random variable.

Probability mass function The probability mass function (PMF) of
a discrete random variable 𝑋 is the function 𝑝𝑋 ∶ ℝ → [0, 1] defined by

𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥). (2.4)

28 CHAPTER 2. PRELIMINARIES

Probabilitydensity function Theprobability density function (PDF)
of a continuous random variable 𝑋 is the function 𝑓𝑋 ∶ ℝ → [0,∞) de-
fined by

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓𝑋(𝑥)𝑑𝑥. (2.5)

Cumulativedistribution function The cumulative distribution func-
tion (CDF) of a random variable 𝑋 is the function 𝐹𝑋 ∶ ℝ → [0, 1] de-
fined by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥). (2.6)

2.4.2 Expectation and moments
Expectation is ameasure of the average value of a random variable. Mo-
ments are measures of the shape of a probability distribution.

Expectation The expectation of a random variable 𝑋 is the average
value of 𝑋 . It is denoted by 𝐸[𝑋]. By definition, it is

𝐸[𝑋] =
⎧⎪
⎨⎪
⎩

∑
𝑥
𝑥 ⋅ 𝑝𝑋(𝑥) if 𝑋 is discrete;

∫
∞

−∞
𝑥 ⋅ 𝑓𝑋(𝑥)𝑑𝑥 if 𝑋 is continuous.

(2.7)

Given 𝛼 a real number, the expectation of 𝛼𝑋 is 𝛼𝐸[𝑋].
Given 𝑐 a real number, the expectation of 𝑋 + 𝑐 is 𝐸[𝑋] + 𝑐.
For any two random variables 𝑋 and 𝑌 , the expectation of 𝑋 + 𝑌 is

𝐸[𝑋] + 𝐸[𝑌].
For a function 𝑔 ∶ ℝ → ℝ, the expectation of 𝑔(𝑋) is

𝐸[𝑔(𝑋)] =
⎧⎪
⎨⎪
⎩

∑
𝑥
𝑔(𝑥) ⋅ 𝑝𝑋(𝑥) if 𝑋 is discrete;

∫
∞

−∞
𝑔(𝑥) ⋅ 𝑓𝑋(𝑥)𝑑𝑥 if 𝑋 is continuous.

(2.8)

Variance The variance of a random variable 𝑋 is a measure of how
spread out the values of 𝑋 are. It is denoted by 𝑉(𝑋). By definition, it is

𝑉(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])2] . (2.9)

2.4. PROBABILITY 29

Note that, as a consequence, the expectation of 𝑋2 is

𝐸[𝑋2] = 𝑉(𝑋) + 𝐸[𝑋]2,

since

𝑉(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])2]
= 𝐸[𝑋2 − 2𝑋𝐸[𝑋] + 𝐸[𝑋]2]
= 𝐸[𝑋2] − 2𝐸[𝑋]𝐸[𝑋] + 𝐸[𝑋]2
= 𝐸[𝑋2] − 𝐸[𝑋]2.

Higher moments are defined similarly, look for skewness and kur-
tosis.

Law of large numbers The law of large numbers states that the av-
erage of a large number of independent and identically distributed ran-
domvariables converges to the expectation of the randomvariable. Math-
ematically,

lim
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = 𝐸[𝑋],

given 𝑋𝑖 ∼ 𝑋 for all 𝑖.

2.4.3 Probability distributions
Several phenomena in nature and society can be modeled as random
variables. Some distributions are frequently used to model these phe-
nomena. The main ones are listed below.

Bernoulli distribution TheBernoulli distribution is a discrete distri-
butionwith two possible outcomes, usually called success and failure. It
is parametrized by a single parameter𝑝 ∈ [0, 1], which is the probability
of success. It is denoted by Bern(𝑝).

The expected value of 𝑋 ∼ Bern(𝑝) is 𝐸[𝑋] = 𝑝, and the variance is
𝑉(𝑋) = 𝑝(1 − 𝑝).

Normal distribution The normal distribution is a continuous distri-
bution with a bell-shaped density. It is parametrized by two parameters,
the mean 𝜇 ∈ ℝ and the standard deviation 𝜎 > 0. It is denoted by
𝒩(𝜇, 𝜎2).

30 CHAPTER 2. PRELIMINARIES

The special casewhere𝜇 = 0 and𝜎 = 1 is called the standardnormal
distribution. It is denoted by𝒩(0, 1).

The probability density function of 𝑋 ∼ 𝒩(𝜇, 𝜎2) is

𝑓𝑋(𝑥) =
1

√2𝜋𝜎2
exp (−(𝑥 − 𝜇)2

2𝜎2) . (2.10)

The expected value of 𝑋 ∼ 𝒩(𝜇, 𝜎2) is 𝐸[𝑋] = 𝜇, and the variance is
𝑉(𝑋) = 𝜎2.

T distribution The T distribution is a continuous distribution with
a bell-shaped density. It is parametrized by a single parameter 𝜈 > 0,
called the degrees of freedom. It is denoted by 𝒯(𝜈).

The T distribution generalizes to the three parameter location-scale
t distribution 𝒯(𝜇, 𝜎2, 𝜈), where 𝜇 is the location parameter and 𝜎 is
the scale parameter. Thus, given 𝑋 ∼ 𝒯(𝜈), we have that 𝜇 + 𝜎𝑋 ∼
𝒯(𝜇, 𝜎2, 𝜈).

Note that
lim
𝜈→∞

𝒯(𝜈) = 𝒩(0, 1).

2.4.4 Permutations and combinations
Permutation A permutation is an arrangement of a set of elements.
The number of permutations of 𝑛 elements is 𝑛!.

Combination A combination is a selection of a subset of elements
from a set. The number of combinations of 𝑘 elements from a set of 𝑛
elements is

(𝑛𝑘) =
𝑛!

𝑘!(𝑛 − 𝑘)! .

3
Fundamental data concepts

The simple believes everything,

but the prudent gives thought to his steps.

— Proverbs 14:15 (ESV)

A useful start point for someone studying data science is the definition
of the term itself.

For Zumel and Mount (2019), “data science is a cross-disciplinary
practice that draws on methods from data engineering, descriptive statis-
tics, datamining, machine learning, and predictive analytics.” They com-
pare the area with the operations research, stating that data science fo-
cuses on implementing data-driven decisions and managing their con-
sequences.

Slide 3.1: Zumel and Mount’s definition

• Cross-disciplinary practice that draws on methods from
data engineering, descriptive statistics, data mining, ma-
chine learning, and predictive analytics.

• Focuses on implementing data-driven decisions and man-
aging their consequences.

Wickham, Çetinkaya-Rundel, andGrolemund (2023) state that “data
science is an exciting discipline that allows you to transform raw data into
understanding, insight, and knowledge.”

31

32 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Slide 3.2: Wickham’s definition

• Transform raw data into understanding, insight, and
knowledge.

• Not necessarily a definition; describes the purpose of data
science.

I find the first definition too restrictive once newmethods and tech-
niques are always under development. Wenever knowwhennew “data-
related” methods will become obsolete or a trend. Also, Zumel and
Mount’s view gives the impression that data science is a operations re-
search subfield. Although I do not try to prove otherwise, I think it is
much more useful to see it as an independent field of study. Obviously,
there are many intersections between both areas (and many other areas
as well). Because of such intersections, I try my best to keep definitions
and terms standardized throughout chapters, sometimes avoiding pop-
ular terms that may generate ambiguities or confusion.

The second one is not really a definition. However, it states clearly
what data science enables us to do. From these thoughts, let’s define the
term.

Definition 3.1

Data science is the study of computational methods to extract
knowledge from measurable phenomena.

I want to highlight the meaning of some terms in this definition.
Computational methods means that data science methods use comput-
ers to handle data and perform the calculations. Knowledge means in-
formation that humans can easily understand or apply to solve prob-
lems. Measurable phenomena are events or processes where raw data
can be quantified in some way1. Raw data are data collected directly
from some source and that have not been subject to any other transfor-
mation by a software program or a human expert. Data is any piece of
information that can be digitally stored.

Kelleher and Tierney (2018) summarize very well the challenges
data science takes up: “extracting non-obvious and useful patterns from

1TODO: talk about non-measurable phenomena

33

Slide 3.3: My definition

• Data science is the study of computational methods to ex-
tract knowledge from measurable phenomena.

• Computational methods use computers to handle data and
perform the calculations.

• Knowledge is information that humans can easily under-
stand or apply to solve problems.

• Measurable phenomena are events or processes where raw
data can be quantified in some way.

• Raw data are data collected directly from some source and
that have not been subject to any other transformation by a
software program or a human expert.

• Data is any piece of information that can be digitally stored.

large data sets […]; capturing, cleaning, and transforming […] data;
[storing and processing] big […] data sets; and questions related to data
ethics and regulation.”

Slide 3.4: Kelleher and Tierney’s challenges

• Extracting non-obvious and useful patterns from large data
sets.

• Capturing, cleaning, and transforming data.

• Storing and processing big data sets.

• Questions related to data ethics and regulation.

Data science contrasts with conventional sciences. Usually, a “sci-
ence” is named after its object of study. Biology is the study of the life,
Earth science studies the planet Earth, and so on. I argue that data sci-
ence does not study data itself, but how we can use them to understand
a phenomenon.

Besides, the conventional scientific paradigm is essentially model-

34 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

driven: we observe a phenomenon related to the object of study, we rea-
son the possible explanation (the model or hypothesis), and we validate
our hypothesis (most of the time using data, though). In data science,
however, we extract the knowledge directly and primarily from the data.
The expert knowledge and reasoningmay be taken into account, but we
give data the opportunity to surprise us.

Thus, the objects of the study in data science are the computational
methods and processes that can extract reliable and ethical knowledge
from huge amounts of data.

Figure 3.1: My view of data science.

statistics domain expertise
philosophy

computer science

data science

Data science is an entire new science. Being a new science does
not mean that its basis is built from the ground up. Most of the
subjects in data science come from other sciences, but its object
of study (computational methods to extract knowledge frommea-
surable phenomena) is particular enough to unfold new scientific
questions – such as data ethics, data collection, etc.

3.1 Fundamental data theory
As expected, data science is not a isolated science. It incorporates sev-
eral concepts from other fields and sciences. In this section, I explain

3.1. FUNDAMENTAL DATA THEORY 35

Slide 3.5: Data science vs conventional sciences

• Conventional sciences are model-driven: observation, hy-
pothesis, and validation.

• In data science, we extract the knowledge directly and pri-
marily from the data.

• Data science studies the computational methods and pro-
cesses that can extract reliable and ethical knowledge from
huge amounts of data.

the basis of each component of the provided definition.

3.1.1 Phenomena
Phenomenon is a term used to describe any observable event or process.
They are the source we use to understand the world around us. In gen-
eral, we use our senses to perceive phenomena. To make sense of them,
we use our knowledge and reasoning.

Philosophy is the study of knowledge and reasoning. It is a very
broad field of study that has been divided into many subfields. One of
them is epistemology, which is the study of knowledge. Epistemology is
the field of philosophy that studies how we can acquire knowledge and
how we can distinguish between knowledge and opinion. In particu-
lar, epistemology studies the nature of knowledge, justification, and the
rationality of belief.

Another important subfield in philosophy is ontology, which is the
study of being. It studies the nature of being, existence, or reality. On-
tology is the field of philosophy that studies what exists and how we
can classify it. In particular, ontology studies the nature of categories,
properties, and relations.

Finally, logic is the study of reasoning. It studies the nature of rea-
soning and argumentation. In particular, logic studies the nature of in-
ference, validity, and fallacies.

In the context of data science, we usually focus on phenomena from
particular domain of expertise. For example, we may be interested in
the phenomena related to the stock market, the phenomena related to
the weather, or the phenomena related to the human health. Thus, we
need to understand the nature of the phenomena we are studying.

36 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Slide 3.6: Philosophy

• Epistemology: the study of knowledge.

• Ontology: the study of being.

• Logic: the study of reasoning.

Thus, fully understading the phenomena we are tackling requires
both a general knowledge of epistemology, ontology, and logic, and a
particular knowledge of the domain of expertise.

Observe as well that we do not restrict ourselves to the “qualitative”
understanding of philosophy. There are several computational meth-
ods that implements the concepts of epistemology, ontology, and logic.
For example, we can use a computer to perform deductive reasoning, to
classify objects, or to validate an argument. Also, we have strong math-
ematical foundations and computational tools to organize categories,
relations, and properties.

The reason we need to understand the nature of the phenomena we
are studying is that we need to guarantee that the data we are collecting
are relevant to the problemwe are trying to solve. Incorrectly perception
of the phenomenamay lead to incorrect data collection, whichmay lead
to incorrect conclusions.

3.1.2 Measuments
In data science, we are interested in measurable phenomena. Measur-
able phenomena are those that we can quantify in some way. For exam-
ple, the temperature of a room is ameasurable phenomenon becausewe
can measure it using a thermometer. The number of people in a room
is also a measurable phenomenon because we can count them.

Whenwe quantify a phenomenon, we perform data collection. Data
collection is the process of gathering data on targeted phenomenon in
an established systematic way. Systematic means that we have a plan to
collect the data andweunderstand the consequences of the plan, includ-
ing the sampling bias. Sampling bias is the influence that the method
of collecting the data has on the conclusions we can draw from them.
Once we have collected the data, we need to store them. Data storage is
the process of storing data in a computer.

3.1. FUNDAMENTAL DATA THEORY 37

Slide 3.7: Phenomena

• Phenomena are the source we use to understand the world
around us.

• We use our senses to perceive phenomena.

• We use our knowledge and reasoning to make sense of
them.

• Computational methods can be used to implement knowl-
edge and reasoning.

• Phenomena are the source of data.

• We need to understand the nature of the phenomenawe are
studying.

• Incorrectly perception of the phenomena may lead to in-
correct data collection, which may lead to incorrect conclu-
sions.

To perform those tasks, we need to understand the nature of data.
Data are any piece of information that can be digitally stored. Data can
be stored in many different formats. For example, we can store data in
a spreadsheet, in a database, or in a text file. We can also store data
in many different types. For example, we can store data as numbers,
strings, or dates.

In data science, studying data types is important because they need
to correctly reflect the nature of the source phenomenon and be com-
patible with the computational methods we are using. Data types also
restrict the operations we can perform on the data.

The foundation and tools to understand data types come from com-
puter science. Among the subfields, I highlight:

• Algorithms and data structures: the study of data types and the
computational methods to manipulate them.

• Databases: the study of storing and retrieving data.

38 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Slide 3.8: Measurable phenomena

• Measurable phenomena are those that we can quantify in
some way.

• Data collection is the process of gathering data on targeted
phenomenon in an established systematic way.

• The collection/sampling bias influence our conclusions.

• Data storage is the process of storing data in a computer.

• Data are any piece of information that can be digitally
stored.

• Data can be stored in many different formats.

• Data can be stored in many different types.

• Data types need to correctly reflect the nature of the source
phenomenon and be compatible with the computational
methods we are using.

• Algorithms, data structures, and databases are important
subfields of computer science when studying data collec-
tion, data storage, and data types.

3.1.3 Knowledge extraction
Once we have collected and stored the data, we need to extract knowl-
edge from them. In data science, we use computational methods to ex-
tract knowledge from data. These computational methods may come
from many different fields. In particular, I highlight:

• Statistics: the study of data collection, organization, analysis, in-
terpretation, and presentation.

• Machine learning: the study of computational methods that can
automatically learn from data.

• Artificial intelligence: the study of computational methods that
can mimic human intelligence.

3.2. STRUCTURED DATA 39

Also, many other fields contribute to the development of domain-
specific computational methods to extract knowledge from data. For
example, in the field of biology, we have bioinformatics, which is the
study of computational methods to analyze biological data. Earth sci-
ences have geoinformatics, which is the study of computational meth-
ods to analyze geographical data. And so on.

Each method has its own assumptions and limitations. Thus, we
need to understand the nature of the methods we are using. In par-
ticular, we need to understand the expected input and output of them.
Whenever the available data donotmatch the requirements of themethod,
we may perform data handling2.

Data handling mainly includes data cleaning, data transformation,
and data integration. Data cleaning is the process of detecting and cor-
recting (or removing) corrupt or inaccurate pieces of data. Data trans-
formation is the process of converting data from one format or type to
another. Data integration is the process of combining data from differ-
ent sources into a single, unified view.

3.2 Structured data

As one expects, when we measure a phenomenon, the resulting data
come in many different formats. For example, we canmeasure the tem-
perature of a room using a thermometer. The resulting data is a num-
ber. We can assess English proficiency using an essay test. The resulting
data is a text. We can register relationships between proteins and their
functions. The resulting data is a graph.

Thus, it is important to understand the nature of the data we are
working with.

The most common data format is the structured data. Structured
data are data that are organized in a tabular format. Each row in the
table represents a single observation and each column represents a vari-
able that describes the observation.

We restrict the kind of information we store in each cell, i.e. the data
type of each measurement. Each column has a data type. The data type
restrict the operations we can perform on the data. For example, we can
perform arithmetic operations on numbers, but not on text.

2It is important to highlight that it is expected that some of the methods assumptions
are not fully met. These methods are usually robust enough to extract valuable knowl-
edge even when data contain imperfections, errors and noise. However, it is still useful
to perform data handling to adjust data as much as possible.

40 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Slide 3.9: Knowledge extraction

• We use computational methods to extract knowledge from
data.

• Statistics, machine learning, and artificial intelligence are
important sciences when studying knowledge extraction.

• Computational methods always have their own assump-
tions and limitations.

• Data handling is the process of adjusting data to the require-
ments of the computational methods, which includes:

– Data cleaning is the process of detecting and correct-
ing (or removing) corrupt or inaccurate pieces of data.

– Data transformation is the process of converting data
from one format or type to another.

– Data integration is the process of combining data from
different sources into a single, unified view.

Themost commonclassification of data types is Stevens’s types: nom-
inal, ordinal, interval, and ratio. Nominal data are data that can be clas-
sified into categories. Ordinal data are data that can be classified into
categories and ordered. Interval data are data that can be classified into
categories, ordered, and measured in fixed units. Ratio data are data
that can be classified into categories, ordered, measured in fixed units,
and have a true zero. In practice, they differ on the logical and arith-
metic operations we can perform on them.

Table 3.1: Stevens’s types.

Data type Operations
Nominal =
Ordinal =,<
Interval =,<,+,−
Ratio =,<,+,−,×,÷

3.2. STRUCTURED DATA 41

However, Stevens’s types donot exhaust all possibilities for data types.
For example, probabilities are bounded at both ends, and thus do not
tolerate arbitrary scale shifts. Velleman and Wilkinson (1993) provide
interesting insights about data types. Although I do not agree with all
his points, I think it is a good reading. In particular, I agree with his
criticism of statements that data types are evident from the data inde-
pendent of the questions asked. The same data can be interpreted in
different ways depending on the context and the goals of the analysis.

However, I do not agree with the idea that good data analysis does
not assume data types. I think that data scientists should be aware of
the data types they are working with and how they affect the analysis.
With no bias, there is no learning. There is no such a thing as a “bias-
free” analysis, the amount of possible combinations of assumptions eas-
ily grows out of control. The data scientist must take responsibility for
the consequences of their assumptions. Good assumptions and hypoth-
esis are a key part of the data science methodology.

Slide 3.10: Structured data

• Structured data are data that are organized in a tabular for-
mat.

• Each row in the table represents a single observation.

• Each column represents a variable that describes the obser-
vation.

• Each column has a data type.

• The data type restrict the operations we can perform on the
data.

• The most common classification of data types is Stevens’s
types: nominal, ordinal, interval, and ratio.

• Stevens’s types do not exhaust all possibilities for data types.

• Data scientists should be aware of the data types they are
working with and how they affect the analysis.

• Inevitably, data scientists make assumptions about the data
types.

42 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

When we work with structured data, two concepts are very impor-
tant: database normalization and tidy data. Database normalization is
mainly focused on the data storage. Tidy data is mainly focused on the
requirements of data for analysis. Both concepts have their mathemat-
ical foundations and tools for data handling.

3.2.1 Database normalization
Database normalization is the process of organizing the columns and ta-
bles of a relational database to minimize data redundancy and improve
data integrity.

Normal form is a state of a database that is free of certain types of
data redundancy. Before studying normal forms, we need to understand
basic concepts in the database theory and the basic operations in rela-
tional algebra.

Relational database theory
Projection The projection of a relation is the operation that returns a
relation with only the columns specified in the projection. For example,
if we have a relation 𝑋[𝐴, 𝐵, 𝐶] and we perform the projection 𝜋𝐴,𝐶(𝑋),
we get a relation with only the columns 𝐴 and 𝐶, i.e. 𝑋[𝐴, 𝐶].

Join The (natural) join of two relations is the operation that returns
a relation with the columns of both relations. For example, if we have
two relations 𝑆[𝑈 ∪ 𝑉] and 𝑇[𝑈 ∪ 𝑊], where 𝑈 is the common set of
attributes, join 𝑆 ⋈ 𝑇 of 𝑆 and 𝑇 is the relationwith tuples (𝑢, 𝑣, 𝑤) such
that (𝑢, 𝑣) ∈ 𝑆 and (𝑢, 𝑤) ∈ 𝑇. The generalized join is built up out of
binary joins: ⋈ {𝑅1, 𝑅2,… , 𝑅𝑛} = 𝑅1 ⋈ 𝑅2 ⋈ ⋯ ⋈ 𝑅𝑛. Since the join
operation is associative and commutative, we can parenthesize however
we want.

Functional dependency A functional dependency is a constraint be-
tween two sets of attributes in a relation. It is a statement that if two
tuples agree on certain attributes, then they must agree on another at-
tribute. Specifically, the functional dependency𝑈 → 𝑉 holds in 𝑅 if and
only if for every pair of tuples 𝑡1 and 𝑡2 in 𝑅 such that 𝑡1[𝑈] = 𝑡2[𝑈], it
is also true that 𝑡1[𝑉] = 𝑡2[𝑉].

Multi-valueddependency Amulti-valueddependency is a constraint
between two sets of attributes in a relation. It is a statement that if two

3.2. STRUCTURED DATA 43

tuples agree on certain attributes, then they must agree on another set
of attributes. Specifically, the multi-valued dependency 𝑈 ↠ 𝑉 holds
in 𝑅 if and only if 𝑅 = 𝑅[𝑈𝑉] ⋈ 𝑅[𝑈𝑊], where 𝑊 are the remaining
attributes.

Join dependency A join dependency is a constraint between subsets
of attributes (not necessarily disjoint) in a relation. 𝑅 obeys the join
dependency ∗ {𝑋1, 𝑋2,… , 𝑋𝑛} if 𝑅 =⋈ {𝑅[𝑋1], 𝑅[𝑋2],… , 𝑅[𝑋𝑛]}.

Normal forms

First normal form (1NF) A relation is in 1NF if and only if all at-
tributes are atomic. An attribute is atomic if it is not a set of attributes.
For example, the relation 𝑅[𝐴, 𝐵, 𝐶] is in 1NF if and only if 𝐴, 𝐵, and 𝐶
are atomic.

Second normal form (2NF) A relation is in 2NF if and only if it is in
1NF and every non-prime attribute is fully functionally dependent on
the primary key. A non-prime attribute is an attribute that is not part
of the primary key. A primary key is a set of attributes that uniquely
identifies a tuple. A non-prime attribute is fully functionally dependent
on the primary key if it is functionally dependent on the primary key and
not on any subset of the primary key. For example, the relation𝑅[𝑈∪𝑉]
is in 2NF if and only if 𝑈 → 𝑋, ∀𝑋 ∈ 𝑉 and there is no 𝑊 ⊂ 𝑈 such
that𝑊 → 𝑋, ∀𝑋 ∈ 𝑉 .

Third normal form (3NF) A relation is in 3NF if and only if it is
in 2NF and every non-prime attribute is non-transitively dependent on
the primary key. A non-prime attribute is non-transitively dependent
on the primary key if it is not functionally dependent on another non-
prime attribute. For example, the relation 𝑅[𝑈∪𝑉] is in 3NF if and only
if𝑈 is the primary key and there is no𝑋 ∈ 𝑉 such that𝑋 → 𝑌, ∀𝑌 ∈ 𝑉 .

Boyce-Codd normal form (BCNF) A relation 𝑅 with attributes 𝑋 is
in BCNF if and only if it is in 2NF and for each nontrivial functional
dependency 𝑈 → 𝑉 in 𝑅, the functional dependency 𝑈 → 𝑋 is in 𝑅. In
other words, a relation is in BCNF if and only if every functional depen-
dency is the result of keys.

44 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Fourth normal form (4NF) A relation 𝑅 with attributes 𝑋 is in 4NF
if and only if it is in 2NF and for each nontrivial multi-valued depen-
dency 𝑈 ↠ 𝑉 in 𝑅, the functional dependency 𝑈 → 𝑋 is in 𝑅. In other
words, a relation is in 4NF if and only if every multi-valued dependency
is the result of keys.

Projection join normal form (PJNF) A relation 𝑅 with attributes
𝑋 is in PJNF3 if and only if it is in 2NF and the set of key dependencies4
of 𝑅 impllies each join dependency of 𝑅. The PJNF guarantees that the
table cannot be decomposed without losing information (except by de-
compositions based on keys).

Note that the ideia behind the definition of BCNFand4NFare slightly
different from the PJNF. In fact, if we consider that for each key depen-
dency implies a join dependency, the relation is in the so-called over-
strong projection-join normal form5. Such a level of normalization does
not improve data storage or eliminate inconsistencies. In practice, it
means that if a relation is in PJNF, careless joins — i.e. those that vio-
late a join dependency — produce inconsistent results.

Example 1 Consider the 2NF relation𝑅[𝐴, 𝐵, 𝐶, 𝐷]with the functional
dependencies 𝐴 → 𝐵, 𝐵 → 𝐶, 𝐶 → 𝐷. The relation is not in 3NF be-
cause 𝐶 is transitively dependent on 𝐴. To normalize it, we can decom-
pose it into the relations 𝑅1[𝐴, 𝐵, 𝐶] and 𝑅2[𝐶, 𝐷]. Now, 𝑅2 is in 3NF
and 𝑅1 is in 2NF, but not in 3NF. We can decompose 𝑅1 into the rela-
tions 𝑅3[𝐴, 𝐵] and 𝑅4[𝐵, 𝐶]. The original relation can be reconstructed
by⋈ {𝑅2, 𝑅3, 𝑅4}.

Example 2 Consider the 2NF relation 𝑅[𝐴𝐵𝐶]6 such that the primary
key is the composite of 𝐴, 𝐵, and 𝐶. The relation is thus in the 4NF, as
no column is a determinant of another column. Suppose, however, the
following constraint: if (𝑎, 𝑏, 𝑐′), (𝑎, 𝑏′, 𝑐), and (𝑎′, 𝑏, 𝑐) are in 𝑅, then
(𝑎, 𝑏, 𝑐) is also in 𝑅. This can be illustrated if we consider 𝐴 as a agent, 𝐵
as a product, and 𝐶 as a company. If an agent 𝑎 represents companies 𝑐

3Also known as fifth normal form (5NF).
4Key dependency is a functional dependency in the form𝐾 → 𝑋 .
5R. Fagin (1979). “Normal forms and relational database operators”. In: Proceedings

of the 1979 ACM SIGMOD International Conference on Management of Data. SIGMOD
’79. Boston, Massachusetts: Association for Computing Machinery, pp. 153–160. isbn:
089791001X. doi: 10.1145/582095.582120. url: https://doi.org/10.1145/582095.582120.

6Here we abreviate𝐴,𝐵,𝐶 as𝐴𝐵𝐶.

https://doi.org/10.1145/582095.582120
https://doi.org/10.1145/582095.582120

3.2. STRUCTURED DATA 45

and 𝑐′, and product 𝑏 is in his portfolio, then assuming both companies
make 𝑏, 𝑎must offer 𝑏 from both companies.

The relation is not in PJNF, as the join dependency ∗ {𝐴𝐵, 𝐴𝐶, 𝐵𝐶}
is not implied by the primary key. (In fact, the only functional depen-
dency is the trivial 𝐴𝐵𝐶 → 𝐴𝐵𝐶.) In this case, to avoid redundancies
and inconsistencies, wemust split the relation into the relations𝑅1[𝐴𝐵],
𝑅2[𝐴𝐶], and 𝑅3[𝐵𝐶].

It is iteresting to notice that in this case, the relation 𝑅1 ⋈ 𝑅2 might
contain tuples that do not make sense in the context of the original re-
lation. For example, if 𝑅1 contains (𝑎, 𝑏) and 𝑅2 contains (𝑎, 𝑐′), the join
contains (𝑎, 𝑏, 𝑐′), which might not be a valid tuple in the original rela-
tion if (𝑏, 𝑐′) is not in 𝑅3. This is very important to notice, as it is a com-
mon mistake to assume that the join of the decomposed relations always
contains valid tuples.

Example 3 Consider the 2NF relation 𝑅[𝐴, 𝐵, 𝐶, 𝐷, 𝐸] with the func-
tional dependencies 𝐴 → 𝐷, 𝐴𝐵 → 𝐶, and 𝐵 → 𝐸. To make it PJNF, we
can decompose it into the relations 𝑅1[𝐴, 𝐷], 𝑅2[𝐴, 𝐵, 𝐶], and 𝑅3[𝐵, 𝐸].
The original relation can be reconstructed by ⋈ {𝑅1, 𝑅2, 𝑅3}. However,
unlike the previous example, the join of the decomposed relations al-
ways contains valid tuples — excluding degenerate joins, where there
are no common attributes. The reason is that all join dependencies im-
plied by the key dependencies are trivial when reduced7.

Slide 3.11: Database normalization

• Minimizes data redundancy.

• Improves data integrity.

• Semantics is expressed in terms of dependencies (func-
tional, multivalued, join), which is usually not clear.

• Appropriate to store data.

7A proof in under development based on M. W. Vincent (1997). “A corrected 5NF
definition for relational database design”. In: Theoretical Computer Science 185.2. Theo-
retical Computer Science in Australia and New Zealand, pp. 379–391. issn: 0304-3975.
doi: https://doi.org/10.1016/S0304-3975(97)00050-9. url: https://www.sciencedirect.
com/science/article/pii/S0304397597000509.

https://doi.org/https://doi.org/10.1016/S0304-3975(97)00050-9
https://www.sciencedirect.com/science/article/pii/S0304397597000509
https://www.sciencedirect.com/science/article/pii/S0304397597000509

46 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

3.2.2 Tidy data
It is estimated that 80% of the time spent on data analysis is spent on
data preparation. Usually, the same process is repeated many times in
different datasets. The ideia is that organized data carries the meaning
of the data, reducing the time spent on handling the data to get it into
the right format for analysis.

Tidy data is a data format that provides a standardized way to orga-
nize data values within a dataset. The main advantage of tidy data is
that it provides clear semantics with focus on only one view of the data.

Many data formats might be ideal for particular tasks, such as raw
data, dense tensors, or normalized databases. However, most of the
statitiscal and machine learning methods require a particular data for-
mat. Tidy data is a data format that is appropriate to those tasks.

Wickham’s thoughts on tidy data

Like families, tidy datasets are all alike but every messy dataset is
messy in its own way.

In an unrestricted table, the meaning of rows and columns are not
fixed. In a tidy table, the meaning of rows and columns are fixed.

It is based on the idea that a dataset is a collection of values, where:

• Each value belongs to a variable and an observation.

• Each variable, represented by a column, contains all values that
measure the same attribute across (observational) units.

• Each observation, represented by a row, contains all values mea-
sured on the same unit across attributes.

• Attributes are the characteristics of the units, e.g. height, temper-
ature, duration.

• Observational units are the individual entities beingmeasured, e.g.
a person, a day, an experiment.

Table 3.2 summarizes the main concepts.
If we follow this structure, themeaning of data is implicit in the table

itself. However, it is not always trivial to organize data in a tidy format.
Usually, we have more than one level of observational units, each one

3.2. STRUCTURED DATA 47

Table 3.2: Tidy data concepts.

Concept Structure Contains Across
Variable Column Same attribute Units

Observation Row Same unit Attributes

represented by a table. Moreover, there might exist more than one way
to define what are the observational units in a dataset.

To organize data in a tidy format, one can consider that:

• Attributes are functionally related among themselves — e.g. Z
is a linear combination of X and Y, or X and Y are correlated, or
𝑃(𝑋, 𝑌) follows some joint distribution.

• Units can be grouped or compared — e.g. person A is taller than
person B, or the temperature in day 1 is higher than in day 2.

A particular point that tidy data do not address is that values in a
columnmight not be in the same scale or unit of measurement8. For ex-
ample, a column might contain the temperature in an experiment, and
another column might contain the unit of measurement that was used
to measure the temperature. This is a common problem in databases,
and it must be addressed for machine learning and statistical methods
to work properly.

Note that the order of the rows and columns is not important. How-
ever, it might be convenient to sort data in a particular way to facili-
tate the understanding. For instance, one usually expects that the first
columns are fixed variables9, i.e. variables that are not the result of a
measurement, and the last columns are measured variables. Also, ar-
ranging rows by some variablemight highlight some pattern in the data.

Usually, columns are named — the collection of all column names
is called the header, while rows are numerically indexed.

Commonmessy datasets
Wickham (2014) lists some common problems with messy datasets and
how to tidy them10. The problems are summarized below.

8Attention: observational unit is not unit of measurement.
9Closely related (and potentially the same as) key in database theory.
10Operations are presented in chapter 6.

48 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Headers are values, not variable names For example, consider ta-
ble 3.3. This table is not tidy because the column headers are values, not
variable names. This format is frequently used in presentations since it
is more compact. It is also useful to perform matrix operations. How-
ever, it is not appropriate for general analysis.

Table 3.3: Messy table, from Pew Forum dataset, where headers
are values, not variable names.

Religion <$10k $10-20k $20-30k …
Agnostic 27 34 60 …
Atheist 12 27 37 …
Buddhist 27 21 30 …
… … … … …

To make it tidy, we can transform it into the table 3.4 by explicitly
introducing variables Income and Frequency. Note that the table is now
longer, but it is also narrower. This is a common pattern when fixing
this kind of issue. The table is now tidy because the column headers are
variable names, not values.

Table 3.4: Tidy version of table 3.3 where values are correctly
moved.

Religion Income Frequency
Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
… … …
Atheist <$10k 12
Atheist $10-20k 27
Atheist $20-30k 37
… … …

Multiple variables are stored in one column For example, con-
sider the table 3.5. This table is not tidy because the column— interestly

3.2. STRUCTURED DATA 49

called column—, contains multiple variables. This format is frequent,
and sometimes the column name contains the names of the variables.
Sometimes it is very hard to separate the variables.

Table 3.5: Messy table, from TB dataset, where multiple variables
are stored in one column.

country year column cases …
AD 2000 m014 0 …
AD 2000 m1524 0 …
AD 2000 m2534 1 …
AD 2000 m3544 0 …
… … … …

To make it tidy, we can transform it into the table 3.6. Two columns
are created to contain the variables Sex and Age, and the old column
is removed. The table keeps the same number of rows, but it is now
wider. This is a common pattern when fixing this kind of issue. The
new version usually fixes the issue of correctly calculating ratios and
frequency.

Table 3.6: Tidy version of table 3.5 where values are correctly
moved.

country year sex age cases …
AD 2000 m 0–14 0 …
AD 2000 m 15–24 0 …
AD 2000 m 25–34 1 …
AD 2000 m 35–44 0 …
… … … … …

Variables are stored in both rows and columns For example, con-
sider the table 3.7. This is the most complicated case of messy data.
Usually, one of the columns contains the names of the variables, in this
case the column element.

To fix this issue, we must first decide which column contains the
names of the variables. Then, we must lengthen the table in function

50 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Table 3.7: Messy table, adapted from airquality dataset, where
variables are stored in both rows and columns.

id year month element d1 d2 … d31
MX17004 2010 1 tmax 24 … 27
MX17004 2010 1 tmin 14 …
MX17004 2010 2 tmax 27 24 … 27
MX17004 2010 2 tmin 14 … 13
… … … … … … … …

of the variables (and potentially their names), as seen in table 3.8. Aft-
wards, we widen the table in function of their names. Finally, we re-
move implicit information, as seen in table 3.9.

Table 3.8: Partial solution to tidy table 3.7. Note that the table is
now longer.

id date element value
MX17004 2010-01-01 tmax
MX17004 2010-01-01 tmin 14
MX17004 2010-01-02 tmax 24
MX17004 2010-01-02 tmin
… … … …

Table 3.9: Tidy version of table 3.7 where values are correctly
moved.

id date tmin tmax
MX17004 2010-01-01 14
MX17004 2010-01-02 24
… … … …

3.2. STRUCTURED DATA 51

Multiple types of observational units are stored in the same table
For example, consider the table 3.10. It is very common during data
collection thatmany observational units are registered in the same table.

Table 3.10: Messy table, adapted from billboard dataset, where
multiple types of observational units are stored in the same table.

year artist track date rank
2000 2 Pac Baby Don’t Cry 2000-02-26 87
2000 2 Pac Baby Don’t Cry 2000-03-04 82
2000 2 Pac Baby Don’t Cry 2000-03-11 72
2000 2 Pac Baby Don’t Cry 2000-03-18 77
… … … … …
2000 2Ge+her The Hardest… 2000-09-02 91
2000 2Ge+her The Hardest… 2000-09-09 87
2000 2Ge+her The Hardest… 2000-09-16 92
… … … … …

To fix this issue, we must each observation unit must be moved to
a different table. Sometimes, it is useful to create unique identifiers for
each observation. The separation avoids several types of potential in-
consistencies. However, take into account that during data analysis, it
is possible that we have to denormalize them. The two resulting tables
are shown in table 3.11 and table 3.12.

Table 3.11: Tidy version of table 3.10 containing the observational
unit track.

track id artist track
1 2 Pac Baby Don’t Cry
2 2Ge+her The Hardest Part Of Breaking Up
… … …

A single observational unit is stored in multiple tables For ex-
ample, consider tables 3.13 and 3.14. It is very common during data
collection that a single observational unit is stored in multiple tables.

52 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Table 3.12: Tidy version of table 3.10 containing the observational
unit rank of the track in certain week.

track id date rank
1 2000-02-26 87
1 2000-03-04 82
1 2000-03-11 72
1 2000-03-18 77
… … …
2 2000-09-02 91
2 2000-09-09 87
2 2000-09-16 92
… … …

Usually, the table (or file) itself represents the value of a variable. When
columns are compatible, it is straightforward to combine the tables.

Table 3.13: Messy tables, adapted from nycflights13 dataset,
where a single observational unit is stored in multiple tables. As-
sume that the origin filename is called 2013.csv.

month day time …
1 1 517 …
1 1 533 …
1 1 542 …
1 1 544 …
… … … …

To fix this issue, we must first make the columns compatible. Then,
we can combine the tables adding a new column that identifies the ori-
gin of the data. The resulting table is shown in table 3.15.

3.2.3 Bridging normalization, tidyness, and data theory
First and foremost, both concepts, normalization and tidy data, are not
in conflict.

3.2. STRUCTURED DATA 53

Table 3.14: Messy tables, adapted from nycflights13 dataset,
where a single observational unit is stored in multiple tables. As-
sume that the origin filename is called 2014.csv.

month day time …
1 1 830 …
1 1 850 …
1 1 923 …
1 1 1004 …
… … … …

Table 3.15: Tidy data where tables 3.13 and 3.14 are combined.

year month day time …
2013 1 1 517 …
2013 1 1 533 …
2013 1 1 542 …
2013 1 1 544 …
… … … … …
2014 1 1 830 …
2014 1 1 850 …
2014 1 1 923 …
2014 1 1 1004 …
… … … … …

Indata normalization, given a set of functional,multivalued and join
dependencies, there exists a normal form that is free of redundancy. In
tidy data, Wickham, Çetinkaya-Rundel, and Grolemund also state that
there is only one way to organize the given data.

Wickham (2014) states that tidy data is 3NF. However, he does not
provide a formal proof. Since tidy data focuses on data analysis and not
on data storage, I argue that there is more than one way to organize the
data in a tidy format. It actually depends on what you define as the
observational unit.

Consider the following example. We want to study the phenomenon
temperature in a certain city. We fix three sensors in different locations

54 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

to measure the temperature. We collect data three times a day. If we
consider as the observational unit the event of measuring the tempera-
ture, we can organize the data in a tidy format as shown in table 3.16.

Table 3.16: Tidy data where the observational unit is the event of
measuring the temperature.

date time sensor temperature
2023-01-01 00:00 1 20
2023-01-01 00:00 2 21
2023-01-01 00:00 3 22
2023-01-01 08:00 1 21
2023-01-01 08:00 2 22
2023-01-01 08:00 3 23
… … … …

However, since the sensors are fixed, we can consider the observa-
tional unit as the temperature at some time. In this case, we can organize
the data in a tidy format as shown in table 3.17.

Table 3.17: Tidy data where the observational unit is the temper-
ature at some time.

date time temp. 1 temp. 2 temp. 3
2023-01-01 00:00 20 21 22
2023-01-01 08:00 21 22 23
… … … … …

In both cases, one can argue that the data is also normalized. In the
first case, the primary key is the composite of the columns date, time,
and sensor. In the second case, the primary key is the composite of the
columns date and time.

One can state that the first form is more appropriate, since it is flex-
ible to add more sensors. However, the second form is very natural for
machine learning and statistical methods. Given the definition of tidy
data, I believe both forms are correct.

3.2. STRUCTURED DATA 55

Another very interesting conjecture is whether we can formalize the
eventual change of observational unit in terms of the order that joins and
grouping operations are performed.

Example Consider the following example: the relation𝑅[𝐴, 𝐵, 𝐶, 𝐷, 𝐸]
and the functional dependencies𝐴 → 𝐷, 𝐵 → 𝐸, and𝐴𝐵 → 𝐶. The rela-
tion can be normalized up to 3NF by following one of the decomposition
trees shown in fig. 3.2. Every decomposition treemust take into account
that the join of the projections are lossless and dependency preserving.

Figure 3.2: Decomposition trees for the relation 𝑅[𝐴𝐵𝐶𝐷𝐸] and
the functional dependencies 𝐴 → 𝐷, 𝐵 → 𝐸, and 𝐴𝐵 → 𝐶 to
reach 3NF.

ABCDE

AD ABCE

BE ABC

ABCDE

BE ABCD

AD ABC

Note that the decomposition that splits first 𝑅[𝐴𝐵𝐶] is not valid,
since the resulting relation 𝑅[𝐴𝐵] is not a consequences of a functional
dependency, see fig. 3.3.

In this kind of relation schema, we have a set of key attributes, here
𝒦 = 𝐴𝐵, and a set of non-prime attributes, here𝒩 = 𝐶𝐷𝐸. Note that
the case𝒦 ∩𝒩 = ∅ is the simplest we can have.

Observe, however, that transitive dependencies11 and complex join
dependencies restrict even further the joins we are allowed to perform.
Further formalization and study is under progress.

Now, consider a very common case: in our dataset, keys are un-
known. Let𝐴 be a student id, 𝐵 be the course id,𝐷 be the student age, 𝐸
be the course load, and𝐶 be the student grade at the course. If only𝐶𝐷𝐸
is known, the table 𝑅[𝐶𝐷𝐸] is already tidy— and the observational unit

11Actually, when an attribute is both key and non-prime, some joins may generate
invalid tables.

56 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Figure 3.3: Invalid decomposition trees for the relation
𝑅[𝐴𝐵𝐶𝐷𝐸].

ABCDE

ABC ABDE

AD ABE

BE AB

ABCDE

ABC ABDE

BE ABD

AD AB

We consider the functional dependencies 𝐴 → 𝐷, 𝐵 → 𝐸, and
𝐴𝐵 → 𝐶. Note that 𝑅[𝐴𝐵] is not a consequence of a functional
dependency.

is the enrollment— once there is no key to perform any kind of normal-
ization. This happens in many cases where privacy is a concern.

But we can also consider that the observational unit is the student.
In this case, we must perform joins traversing the leftmost decomposi-
tion tree in fig. 3.2 from bottom to top. After each join, a summariza-
tion operation is performed on the relation considering the student as
the observational unit, i.e. over attribute 𝐴. The first join results in re-
lation 𝑅[𝐴𝐵𝐶𝐸] and the summarization operation results in a new rela-
tion 𝑅[𝐴𝐹𝐺]where 𝐹 is the average grade and 𝐺 is the total course load
taken by the student. They all calculated based on the rows that are
grouped in function of 𝐴. It is important to notice that, after the sum-
marization operation, all observations must contain a different value of
𝐴. The second join results in relation 𝑅[𝐴𝐷𝐹𝐺] = 𝑅[𝐴𝐷] ⋈ 𝑅[𝐴𝐹𝐺].
This relation has functional dependency 𝐴 → 𝐷𝐹𝐺, and it is in 3NF
(which is also tidy).

Unfortunately, it is not trivial to calculate all possible decomposi-
tion trees for a given dataset. Further formalization and study is under
progress.

3.3. UNSTRUCTURED DATA 57

3.2.4 Data semantics and interpretation
In the rest of the book, we focus on a statistical view of the data. Besides
the functional dependencies, we also consider the statistical dependen-
cies of data. For instance, attributes 𝐴 and 𝐵 might not be functionally
dependent, but they might exits unknown 𝑃(𝐴, 𝐵) that we can estimate
from the data. Each observed value of a key can represent a instance
of a random variable, and the other attributes can represent measured
attributes or calculated properties.

For data analysis, it is very important to understand the relation-
ships between the observations. For example, we might want to know
if the observations are independent, if they are identically distributed,
or if there is a known selection bias. We might also want to know if the
observations are dependent on time, and if there are hidden variables
that affect the observations.

Following wrong assumptions can lead to wrong conclusions. For
example, if we assume that the observations are independent, but they
are not, we might underestimate the variance of the estimators.

Although we not focus on time series, we must consider the tem-
poral dependence of the observations. For example, we might want to
know how the observation 𝑥𝑡 is affected by 𝑥𝑡−1, 𝑥𝑡−2, and so on. We
might also want to know if Markov property holds, and if there is peri-
odicity and seasonality in the data.

For the sake of the scope of this book, we suggest that any predic-
tion on temporal data should be done in the state space, where it is
safer to assume that observations are independent and identically dis-
tributed. This is a common practice in reinforcement learning and deep
learning. Takens’ theorem12 allows you to reconstruct the state space
of a dynamical system using time-delay embedding. Given a single ob-
served time series, you can create a multidimensional representation
of the underlying dynamical system by embedding the time series in a
higher-dimensional space. This embedding can reveal the underlying
dynamics and structure of the system.

3.3 Unstructured data
Unstructured data are data that do not have a predefined data model or
are not organized in a predefined manner. For example, text, images,

12F. Takens (2006). “Detecting strange attractors in turbulence”. In: Dynamical Sys-
tems and Turbulence, Warwick 1980: proceedings of a symposium held at the University of
Warwick 1979/80. Springer, pp. 366–381.

58 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

and videos are unstructured data.
Every unstructured dataset can be converted into a structured dataset.

However, the conversion process is not always straightforward nor loss-
less. For example, we can convert a text into a structured dataset by
counting the number of occurrences of each word. However, we lose
the order of the words in the text.

The study of unstructured data is, for the moment, out of the scope
of this book.

4
Data science project

Figured I could throw myself a pity party or go back to school
and learn the computers.

— Don Carlton, Monsters University (2013)

First of all, a data science project is a software project. The difference
between a data science software and a traditional software is that some
components of the former is constructed from data. This means that
part of the solution cannot be designed from the knowledge of the do-
main expert, but must be learned from the data. (Alternatively, the cost
of designing the solution is too high, and it is more efficient to learn it
from the data.)

One good example of a data science project is a spam filter. The
spam filter is a software that classifies emails into two categories: spam
and non-spam. The software is trained using a set of emails that are
already classified as spam or non-spam. The software is then used to
classify new emails. The software is a data science software because the
classification algorithm is learned from the data, i.e. the filters are not
designed “by hand”.

4.1 CRISP-DM

CRISP-DM1 is a methodology for data mining projects. It is an acronym
for Cross Industry Standard Process for Data Mining. It is a methodol-

1Official guide available at https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/
ModelerCRISPDM.pdf.

59

https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/ModelerCRISPDM.pdf
https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/ModelerCRISPDM.pdf

60 CHAPTER 4. DATA SCIENCE PROJECT

ogy that was developed in the 1990s by IBM, and it is still widely used
today.

CRISP-DM is a cyclic process. The process is composed of six phases:

1. Business understanding: this is the phasewhere the project objec-
tives are defined. The objectives must be defined in a way that is
measurable. The phase also includes the definition of the project
plan.

2. Data understanding: this is the phase where the data is collected
and explored. The data is collected from the data sources, and it
is explored to understand its characteristics. The phase also in-
cludes the definition of the data quality requirements.

3. Data preparation: this is the phase where the data is prepared for
the modeling phase. The data is cleaned, transformed, and ag-
gregated. The phase also includes the definition of the modeling
requirements.

4. Modeling: this is the phase where the model is trained and val-
idated. The model is trained using the prepared data, and it is
validated using the validation data. The phase also includes the
definition of the evaluation requirements.

5. Evaluation: this is the phase where the model is evaluated. The
model is evaluated using the evaluation data. The phase also in-
cludes the definition of the deployment requirements.

6. Deployment: this is the phase where the model is deployed. The
model is deployed using the deployment requirements. The phase
also includes the definition of the monitoring requirements.

Figure 4.1 shows a diagram of the CRISP-DM process. Note that the
process is cyclic and completly focused on the data. The process do not
address the software development aspects of the project.

TheCRISP-DMmethodology is a good starting point for data science
projects. However, it does notmean that should be followed strictly. The
process is cyclic and flexible, and adaptations are possible at any stage
of the process.

4.2 ZN approach
Zumel and Mount (2019) also propose a methodology for data science
projects—whichwe call the ZN approach. Besides describing each step

4.2. ZN APPROACH 61

Figure 4.1: Diagram of the CRISP-DM process.

Business un-
derstanding

Data un-
derstanding

Data
preparation

Modeling

Evaluation

Deployment Data

Each block represents a phase of the CRISP-DM process. Data is
the central element of the process. Arrows represent the transi-
tions between the phases.

in a data science project, they further address the roles of each individ-
ual involved in the project. They state that data science projects are al-
ways collaborative, as they require domain expertise, data expertise, and
software expertise. The requirements are dynamic, and the project has
many exploratory phases. Usually, projects based on data are urgent,
and they must be completed in a short time— not only due to the busi-
ness requirements, but also because the data changes over time. The
authors state that agile methodologies are suitable (and necessary) for
data science projects.

62 CHAPTER 4. DATA SCIENCE PROJECT

4.2.1 Roles of the ZN approach
In their approach, five roles are defined.

Project sponsor It is themain stakeholder of the project, the one that
needs the results of the project. He represents the business interests and
champions the project. The project is considered successful if the spon-
sor is satisfied. Note that, ideally, the sponsor can not be the data scien-
tist, but someone that is not involved in the development of the project.
However, he needs to be able to express quantitatively the business goals
and participate actively in the project.

Client The client is the domain expert. He represents the end users’
interests. In a small project, he is usually the sponsor. He translates the
daily activities of the business into the technical requirements of the
software.

Data scientist The data scientist is the one that sets and executes the
analytic strategy. He is the one that communicates with the sponsor and
the client, effectively connecting all the roles. In small projects, he can
also act as the developer of the software. However, in large projects, he is
usually the project manager. Although it is not required to be a domain
expert, the data scientist must be able to understand the domain of the
problem. He must be able to understand the business goals and the
client’s requirements. Most importantly, he must be able to define and
to solve the right tasks.

Data architect The data architect is the one that manages data and
data storage. He usually is involved in more than one project, so it is
not an active participant. He that receives instructions to adapt the data
storage and means to collect data.

Operations The operations role is the one that manages infrastruc-
ture and deploys final project results. He is responsible to define re-
quirements such as response time, programming language, and the in-
frastructure to run the software.

4.3. AGILE METHODOLOGY 63

4.2.2 Processes of the ZN approach
Zumel andMount’s model is similar to CRISP-DM, but emphasizes that
back-and-forth is possible at any stage of the process. Figure 4.2 shows
a diagram of the process. The phases are:

• Define the goal: what problem are we trying to solve?

• Collect and manage data: what information do we need?

• Build themodel: find patterns in the data thatmay solve the prob-
lem.

• Evaluate the model: is the model good enough to solve the prob-
lem?

• Present results and document: establish that we can solve the
problem and how we did it. (This step is a differentiator from
CRISP-DM. In ZN approach, result presentation is essential; data
scientists must be able to communicate their results effectively to
the client/sponsor.)

• Deploy the model: make the model available to the end users.

4.3 Agile methodology

Agile is a methodology for software development. It is an alternative to
the waterfall methodology. The waterfall methodology is a sequential
design where each phase must be completed before the next phase can
begin.

The four values of agile manifesto are:

• Individuals and interactions over processes and tools;

• Working software over comprehensive documentation;

• Customer collaboration over contract negotiation;

• Responding to change over following a plan.

64 CHAPTER 4. DATA SCIENCE PROJECT

Figure 4.2: Diagram of the data science process proposed by
Zumel and Mount (2019).

Define
the goal

Collect and
manage data

Build the
model

Evaluate
the model

Present
results

Deploy
the model

Each block represents a phase of the data science process. The
emphasis is on the cyclic nature of the process. Arrows represent
the transitions between the phases, that can be back-and-forth.

4.4 SCRUM framework

SCRUM is an agile framework for software development. It is a process
framework for managing complex projects. It is a lightweight, which
means that it provides just enough guidance to be effective.

Many consider that SCRUMis not adequate for data science projects.
The main reason is that SCRUM is designed for projects where the re-
quirements are known in advance. Also, that data science projects have
exploratory phases, which are not well supported by SCRUM.

I argue that this view is wrong. SCRUM is a framework, and it is
designed to be adapted to the needs of the project. SCRUM is not a rigid
process. In the following, I propose an extension to SCRUM that makes
it suitable for data science projects.

(In real-world,most developers donot havehacking-level skills. They
are not autonomous enough to work without a plan. This is especially
true for “data scientists,” who are often not even developers. SCRUM is
a good compromise between the need for autonomy and the need for a
detailed plan. Project methodology is needed to ensure that the project
is completed in time and within budget.)

4.5. OUR APPROACH 65

4.5 Our approach
The previouslymentionedmethodologies lack the focus on the software
development aspects of the data science project. For instance, CRISP-
DM defines the stages only of the data mining process, i.e. it does not
explicitly address user interface or data collection. Zumel and Mount’s
approach addresses data collection and presentation of results, but del-
egates the software development to the operations role, barely mention-
ing it. SCRUM is a good framework for software development, but it is
not designed for data science projects. It lacks the exploratory phases of
data science projects.

Thus, we propose an extension to SCRUM that makes it suitable for
data science projects. The extension is based on the following observa-
tions:

• Data science projects have exploratory phases;

• Data itself is a component of the solution;

• The solution is usually modularized, parts of it are constructed
from data while the other parts are constructed like traditional
software;

• The solution is usually deployed as a service, that must be main-
tained and monitored.

Moreover, we add two other values besides the agile manifesto val-
ues. They are:

• Model confidence/understanding over model performance;

• Code version control over interactive environments.

The first value is based on the observation that the model perfor-
mance is not the most important aspect of the model. The most impor-
tant aspect is the being sure that the model behaves as expected (and
sometimes why it behaves as expected). It is not uncommon to find
models that seems to perform well during evaluation steps2, but that
are not suitable for production.

The second value is based on the observation that interactive envi-
ronments are not suitable for the development of themodel search code,
for instance. Interactive environments auxiliate the exploratory phases,

2Of course, when evaluation is not performed correctly.

66 CHAPTER 4. DATA SCIENCE PROJECT

but the final version of the code must be version controlled. Often, we
hear stories that models cannot be reproduced because the code that
generated them are not runnable anymore. This is a serious problem,
and it is not acceptable for maintaining a software solution.

These observations and values are the basis of our approach. The
roles and principles of our approach are described in the following sec-
tions.

4.5.1 The roles of our approach
Combine SCRUM roles with the roles defined by Zumel and Mount
(2019).

Table 4.1: Roles of our approach.

Our approach SCRUM ZM
Sponsor Product owner Project sponsor
Client Stakeholder Client
Data scientist Scrum master Data scientist
Dev Team Data architect/operations

The roles of SCRUM are associated with the roles defined by
Zumel and Mount (2019). In our approach, the data scientist
leads the development team and interacts with the sponsor and
the client. The development team includes people with both
database and software engineering expertise.

4.5.2 The principles of our approach
1. Modularize the solution. Usually, in four main modules: fron-

tend, backend, dataset, and model search. The frontend is the
user interface. The backend is the server-side code. The dataset is
the data that is used to train the model. The model search is the
code that searches for the best model.

2. Version control everything. This includes the code, the data, and
the documentation. The most used tool for code version control

4.5. OUR APPROACH 67

is Git. For datasets, extensions to Git exist, such as DVC3. One
important aspect is to version control the model search code. In-
teractive environments such as Jupyter notebooks are not suitable
for this purpose. They can be used to draft the code, but the final
version must be version controlled.

3. Continuous integration and continuous deployment. This means
that the code is automatically (or at least semi-automatically) tested
and deployed. The backend and frontend code is tested using unit
tests. The model search code is tested using validation methods
such as cross-validation and Bayesian analysis on the discovered
models. Usually the model search code is very computationally
intensive, and it is not feasible to run it on every commit. Instead,
it is run periodically, for example once a day. If the clould in-
frastructure required to run the model search code is not avail-
able to automate validation and deploymen, at least make sure
that the code is easily runnable. This means that the code must
be well documented, and that the required infrastructure must be
well documented. Also aggregate commands using a Makefile or
a similar tool. Pay attention on the dependences between dataset
and the model training. If the dataset changes significantly, not
only the deployed model must be retrained, but the model search
algorithm may need to be rethought.

4. Reports as deliverables. During sprints, the deliverables of data
exploration are reports. The reports must be version controlled
and must be reproducible. The reports must be generated in a
way that is understandable by the client and the sponsor.

5. Setup quantitative goals. Do not fall on the trap of forever im-
proving themodel. Instead, setup quantitative goals for themodel
performance. For example, the model must have a precision of at
least 90%. Once you reach the goal, prioritize other tasks.

6. Measure exactly what you want. During model validation, use
your own metrics based on the project goals. Usually, more than
one metric is needed, and they might be conflicting. Use strate-
gies to balance the metrics, such as Pareto optimization. Beware
of the metrics that are most used in the literature. They might
not be suitable for your project. Notice that during model train-
ing, some methods are limited to the loss functions that they can

3https://dvc.org/

https://dvc.org/

68 CHAPTER 4. DATA SCIENCE PROJECT

optimize. If possible, choose a method that can optimize the loss
function that you want. Even if you are not explicitly optimizing
the wanted metric, you might find a model that performs well on
that metric. That is a reason validation is important.

7. Report model stability and performance variance. Understand-
ing the limitations and characteristics of the model is more im-
portant than the model performance. For example, if the model
performance is high, but the model is unstable, it is not suitable
for production. Also, in some scenarios, interpretability is more
important than performance.

8. In user interface, mask data-science-specific terminology. Usu-
ally, data science software gives the user the option to choose the
model. In order to avoid confusion, the user interface must mask
the data-science-specific terminology. This helps non experts to
use the software consciously.

9. Monitormodel performance in production. If possible setup feed-
back from the user interface. Avoid automation of model releases
because concept drift usually requires exploratory analysis.

10. Use the appropriate backend. RESTAPI vswebsocket. The choice
depends on the requirements of the project. REST API is more
suitable for stateless requests, while websocket is more suitable
for stateful requests. For example, if the user interface must be
updated in real-time, websocket is more suitable. If the user inter-
face is used to submit batch requests, REST API is more suitable.

5
Statistical learning theory

To understand God’s thoughts we must study statistics, for
these are the measure of His purpose.

— Florence Nightingale, her diary

We can address several kinds of problems using algorithms that learn
from data. However, we focus on the problem of inductive learning. Be-
fore we go further, let us define some terms.

Definition 5.1: Artificial intelligence

The field that studies algorithms that exhibit intelligent behavior.

Artificial intelligence is a very broad field, including not only the
study of algorithms that exhibit intelligent behavior, but also the study
of the behavior of intelligent systems. For instance, it encompasses the
study of optimizationmethods, bioinspired algorithms, robotics, philos-
ophy of mind, and many other topics. We are interested in the subfield
of artificial intelligence that studies algorithms that exhibit some form
of intelligent behavior.

Definition 5.2: Machine learning

The subfield of artificial intelligence that studies algorithms that
enable computers to automatically learn from data.

69

70 CHAPTER 5. STATISTICAL LEARNING THEORY

Machine learning is the subfield of artificial intelligence that studies
algorithms that enable computers to automatically learn and improve
their performance on a task from experience, without being explicitly
programmed by a human being.

Definition 5.3: Predictive learning

Themachine learning paradigm that studies the problem of mak-
ing predictions given known input data.

Themachine learning paradigm that focuses onmaking predictions
about outcomes (sometimes about the future) based on historical data.
Depending on the reasoning behind the learning algorithms, the main
predictive algorithms are classified in either inductive or transductive.

Definition 5.4: Inductive learning

The machine learning approach that involves deriving general
rules from specific observations.

Induction a type of reasoning that goes from specific instances to
more general principles. Inductive learning is the machine learning ap-
proach that studies algorithms that, given data representing the set of
specific instances, derive general rules that can make predictions about
any new instances.

Figure 5.1 give us a hierarchical view of the learning field. Alterna-
tives— such as descriptive learning in opposition to predictive learning,
or transductive learning in opposition to inductive learning — are out
of the scope of this course.

Maybe themost general (and useful) framework for predictive learn-
ing is Statistical Learning Theory. In this chapter, we will introduce the
basic concepts of this theory.

5.1 Hypothesis and setup
Consider the set

{(x𝑖, 𝑦𝑖) ∶ 𝑖 = 1,… , 𝑛} (5.1)
where each sample 𝑖 is associated with a feature vector x𝑖 ∈ 𝒳 and a tar-
get variable 𝑦𝑖 ∈ 𝒴. We assume that samples are random independent

5.2. THE LEARNING PROBLEM 71

Figure 5.1: Organizational chart of the learning field.

artificial intelligence

machine learning

predictive learning

inductive learning

identically distributed (i.i.d.) observations drawn according to

𝑃(𝑥, 𝑦) = 𝑃(𝑥)𝑃(𝑦|𝑥).

Both 𝑃(𝑥) and 𝑃(𝑦|𝑥) are fixed but unknown.
This is equivalent to the original learning problem stated by V. N.

Vapnik (1999b), where a generator produce random vectors x accord-
ing to a fixed but unknown probability distribution 𝑃(𝑥) and a super-
visor returns an output value 𝑦 for every input vector 𝑥 according to a
conditional distribution function 𝑃(𝑦|𝑥), also fixed but unknown.

Moreover, note that this setup is compatible with the idea of tidy
data and 3NF (see section 3.2.3). Of course, we assume 𝑋, 𝑌 are only
the measured variables (or non-prime attributes). In practice, it means
that we left aside the keys in the learning process.

5.2 The learning problem

Consider a learning machine capable of generating a set of functions
𝑓(𝑥; 𝜃) ≡ 𝑓𝜃(𝑥), 𝜃 ∈ Θ and 𝑓𝜃 ∶ 𝒳 → 𝒴. The problem of learning is
that of choosing, among all possible 𝑓𝜃, the one that predicts the target
variable the best possible way.

72 CHAPTER 5. STATISTICAL LEARNING THEORY

In order to learn, we must first define the loss (or discrepancy) ℒ
between the response 𝑦 to a given input 𝑥, drawn from 𝑃(𝑥, 𝑦), and the
response provided by the learning machine.

Then, given the risk function

𝑅(𝜃) = ∫ℒ(𝑦, 𝑓𝜃(𝑥)) 𝑑𝑃(𝑥, 𝑦), (5.2)

the goal is to find the function 𝑓𝜃 that minimizes 𝑅(𝜃) where the only
available information is the training set (5.1). This is the empirical risk
minimization (ERM) problem.

This formulation encompasses many specific problems. I focus on
the two of them which I believe are the most fundamental ones: binary
data classification1 and regresssion estimation2. I left aside the density
estimation problem, once it is not addressed in the remaining of the
book.

Binary data classification task. In this task, the output 𝑦 take on
only two possible values, zero or one, and the functions 𝑓𝜃 are indicator
functions. For the loss

ℒ(𝑦, 𝑓𝜃(𝑥)) = {0 if 𝑦 = 𝑓𝜃(𝑥)
1 if 𝑦 ≠ 𝑓𝜃(𝑥),

we aim at minimizing the risk (5.2) which becomes the probability of
classification error.

Regression estimation task. Let the outcome 𝑦 be a real value and
the regression 𝑟 be

𝑟(𝑥) = ∫𝑦𝑑𝑃(𝑦|𝑥).

The regression function is the function 𝑟 = 𝑓𝜃 that minimizes the
risk function (5.2) with the loss

ℒ(𝑦, 𝑓𝜃(𝑥)) = (𝑦 − 𝑓𝜃(𝑥))
2.

If 𝑟 ∉ {𝑓𝜃 ∶ 𝜃 ∈ Θ}, the function 𝑓𝜃′ that minimizes the risk func-
tion is the closest to the regression function in the metric 𝑙2, i.e. we look
for 𝜃′ such that

𝜃′ = argmin
𝜃∈Θ √

∫(𝑟(𝑥) − 𝑓𝜃(𝑥))
2 𝑑𝑃(𝑥).

1Vapnik calls it pattern recognition.
2We are not talking about regression analysis.

5.3. ERM INDUCTIVE PRINCIPLE 73

5.3 ERM inductive principle

In the following sections, 𝑧 describes the pair (𝑥, 𝑦) and 𝐿(𝑧, 𝜃) a generic
loss function. The training dataset is thus a set of𝑛 i.i.d. samples 𝑧1,… , 𝑧𝑛.

Since the distribution 𝑃(𝑧) is unknown, the risk functional 𝑅(𝜃) is
replaced by the empirical risk functional

𝑅𝑛(𝜃) =
1
𝑛

𝑛
∑
𝑖=1

𝐿(𝑧𝑖, 𝜃). (5.3)

Approximating 𝑅(𝜃) by the empirical risk functional 𝑅𝑛(𝜃) is the so
called ERM inductive principle. The ERM principle is the basis of the
statistical learning theory.

Classical methods, such as least-squares, maximum likelihood, and
maximum a posteriori are all realizations of the ERM principle for spe-
cific loss functions and hypothesis spaces.

In the following sections, we address the four main questions of
learning theory. We summarize them in table 5.1.

Table 5.1: The four main questions of learning theory.

Part Question
Consistency What are the necessary and sufficient

conditions for consistency of a learning
process?

Rate of convergence How fast is the rate of convergence of
the learning process?

Generalization How can one controle the generaliza-
tion ability of the learning process?

Construction How can one construct a learning ma-
chine that satisfies the conditions of
consistency and generalization?

5.4 Consistency of learning processes

Addressing consistency of a learning process means that we are inter-
ested in the convergence of the empirical risk functional 𝑅𝑛(𝜃) to the

74 CHAPTER 5. STATISTICAL LEARNING THEORY

risk functional 𝑅(𝜃) as 𝑛 → ∞. In other words, it is an asymptotic the-
ory about the behavior of the empirical risk functional as the sample
size 𝑛 goes to infinity.

The necessary and sufficient conditions for consistency give us guar-
antees that the learning process is general and cannot be improved given
our premises. The most important topic in this section is the Vapnik-
Chervonenkis (VC) entropy.

5.4.1 Definition of consistency
AnERMmethod is consistent if it produces a sequence of functions 𝑓𝜃𝑛 ,
for 𝑛 = 1, 2,… , for which both the expected risk and the empirical risk
converge to the their minimum values.

Definition 5.5: Consistency of a learning process

Let 𝜃𝑛 be the solution of

𝜃𝑛 = argmin
𝜃∈Θ

𝑅𝑛(𝜃).

An ERM method is consistent for the set of functions
{𝐿(𝑧, 𝜃) ∶ 𝜃 ∈ Θ} and the probability distribution 𝑃(𝑧) if

lim
𝑛→∞

𝑅(𝜃𝑛) = inf
𝜃∈Θ

𝑅(𝜃),

lim
𝑛→∞

𝑅𝑛(𝜃𝑛) = inf
𝜃∈Θ

𝑅(𝜃).

This definitionmeans that one can estimate the risk functional 𝑅(𝜃)
by the empirical risk functional𝑅𝑛(𝜃), while the values of achieved risks
converge to the minimum value of the risk functional. See fig. 5.2.

However, since this definition of consistency includes cases of trivial
consistency, there is no way to obtain such conditions.

Consider the following example. Suppose we have found a set of
functions {𝑓𝜃 ∶ 𝜃 ∈ Θ} such that the ERM method is not consistent.
Let’s add one more function 𝜙(𝑧) to the set, such that

inf
𝜃∈Θ

𝐿(𝑧, 𝜃) > 𝜙(𝑧), ∀𝑧.

It is straightforward to see that the ERM method is consistent for the
new set of functions {𝐿(𝑧, 𝜃) ∶ 𝜃 ∈ Θ} ∪ {𝜙} and the probability distri-
bution 𝑃(𝑧). In this case, the function 𝜙(𝑧) gives both the minimum

5.4. CONSISTENCY OF LEARNING PROCESSES 75

Figure 5.2: Convergence of the empirical and expected risk func-
tionals.

𝑛

𝑅(𝜃𝑛)
𝑅𝑛(𝜃𝑛)

inf𝜃∈Θ 𝑅(𝜃)

value of the risk functional and the empirical risk functional. This is
illustrated in fig. 5.3.

Figure 5.3: An illustrative case of trivial consistency.

𝑧

𝐿(𝑧, 𝜃), 𝜃 ∈ Θ
𝜙(𝑧)

76 CHAPTER 5. STATISTICAL LEARNING THEORY

5.4.2 Nontrivial consistency

5.5 Rate of convergence of learning processes

5.6 Generalization ability of learning processes

5.7 Construction of learning machines

5.7.1 Data classification methods
5.7.2 Regression estimation methods

6
Data handling

Tidy datasets are all alike, but every messy dataset is messy in
its own way.

—Hadley Wickham, Tidy Data

Data handling is the process of adjusting data to make it suitable for
analysis. It involves three main tasks: data transformation, data clean-
ing, and data integration.

In this chapter, we consider that tables are rectangular data struc-
tures in which values of the same column share the same properties (i.e.
the same type, same restrictions, etc.) and each column has a name.
Moreover, we assume that any value is possiblymissing.

6.1 Data handling operators

In the literature and in software documentation, you will find a variety
of terms used to describe data handling operations1. They often refer to
the same or similar operations, but the terminology can be confusing.
In this section, I present a summary of these operations mostly based
on Wickham, Çetinkaya-Rundel, and Grolemund (2023) definitions2.

These operations are the building blocks of the data handling tasks
wewill discuss in thenext sections. They can also be extensively parametrized

1The terminology “data handling” itself is not universal. Some authors and libraries
call it “data manipulation”, “data wrangling”, “data shaping”, or “data engineering”. I use
the term “data handling” to avoid confusionwith the term “datamanipulation” which has
a negative connotation in some contexts.

2Which are called verbs.

77

78 CHAPTER 6. DATA HANDLING

Slide 6.1: Data handling operators

• Filtering rows;

• Selecting columns;

• Mutating columns;

• Aggregating rows;

• Binding datasets;

• Joining datasets;

• Pivoting (spreading) and unpivoting (gathering) datasets.

and combined to create more elaborate data handling pipelines. For in-
stance, most of them can use predicates to define the groups, arrange-
ments, or conditions under which they should be applied.

We use the following terminology to refer to the data handling pa-
rameters:

• Predicate: a function that returns a logical value, used to filter
rows/columns or to define the groups of rows/columns to be pro-
cessed;

• Aggregation function: a function that returns a single value
given a vector of values (in which, the order of the values may
be important);

• Window function: a function that returns a vector of values
given a vector of values in which, the order of the values is im-
portant;

• Expression: a function that returns a vector of values element-
wise, used to create new columns or to modify existing ones.

Operators are also vectorized, meaning that they can be applied to
multiple columns or rows at once. This is a key feature of data handling
operations, as it allows for expressive and efficient data manipulation.

Many of them are also reversible, meaning that they can be undone.
This is important because it allows for reproducibility and traceability
of the data handling process.

6.1. DATA HANDLING OPERATORS 79

Slide 6.2: Data handling pipelines

• Data handling operations can be combined to create com-
plex pipelines;

• Operators may be reversible;

• Operators are vectorized;

• They can be parametrized with predicates, aggregation
functions, and expressions;

• They operate on datasets and return new datasets as output.

• They are declarative.

They operate on a dataset (or more than one) given as input and re-
turn a new dataset as output. This is important because it allows for the
creation of data handling pipelines, where the output of one operation is
the input of the next one. Parameters like columnnames, predicates, ag-
gregation functions, and expressions can be passed to these operations
to customize their behavior.

Unlike traditional procedural programming, where conditional state-
ments and loops are used to manipulate data, data handling operations
are declarative. This means that they are expressed in terms of what
should be done, not how it should be done. This is a powerful abstrac-
tion that allows for the creation of complex pipelines with a few lines of
code.

6.1.1 Filtering rows
Filtering is the process of selecting a subset of rows from a dataset based
on a predicate. If more than a single predicate is used, they are com-
bined using a logical operator, such as AND or OR.

After filtering, the dataset will contain only the rows that satisfy the
predicate. Columns remain unchanged. This operation is potentially
irreversible, as the removed rows are lost.

In the basic form, each row is treated independently. For instance,
the predicate age > 18 will select all rows where the value in the age
column is greater than 18.

80 CHAPTER 6. DATA HANDLING

However, if the predicate depends on an aggregation orwindow func-
tion, one must specify the groups and/or the order of the rows. For
instance, the predicate age > mean(age) group by country will se-
lect the rows where the value in the age column is greater than the
mean of the age for each country. Another example is the predicate
cumsum(price) < 100 sort by date, which selects the rows that sat-
isfy the condition that the cumulative sum of the price column is less
than 100 given the order of the rows defined by the date column.

The trivial group is the entire dataset, so it is usually not necessary
to specify it explicitly. However, it is usually not sensible to not specify
the order of the rows.

When dealing with real values, be aware of floating-point precision
issues. In other words, do not use the equality operator to compare real
numbers. Most of libraries provide operators to compare real numbers
within a given tolerance.

Practical tips

• Use filtering to remove rows that are not relevant to your
analysis;

• Use predicates to define the conditions under which rows
should be removed;

• When aggregation functions are needed to define the pred-
icate, specify the groups and the order of the rows;

• Be aware of floating-point precision issues when comparing
real numbers.

6.1.2 Selecting columns
Selecting is the process of choosing a subset of columns from a dataset.
The remaining columns are discarded. This operation is not reversible,
as the discarded columns are lost. Rows remain unchanged.

There are two main ways to select columns: by name or by predi-
cate. The former is the most common and is used to select a fixed set
of columns. The latter is used to select columns that satisfy a given
condition, i.e., the values in the columns are used to determine which
columns should be selected.

6.1. DATA HANDLING OPERATORS 81

When selecting columns byname, one canuse a list of columnnames
or a regular expression3. The latter is useful when the column names
follow a pattern that reflects the semantics of the columns. For instance,
one canuse the regular expressioncol[0-9]+ to select all columnswhose
names start with col followed by one or more digits.

When selecting columns by predicate, one can use a function that
returns a logical value to define the condition under which a column
should be selected. For instance, one can use the predicate isnumeric
to select all columns that contain numeric values. Notice, however, that
the predicate is applied to each column independently and returns a
single logical value for each column.

Like filtering, selecting predicates might contain aggregation func-
tions. Although it is theorically possible to consider the order of the
values in the columns, it is not common to do so. (Especially because
one would need to assume that the rows are previously sorted by some
criterion.) Groups, however, never make sense in this context, once the
predicate is applied to each column independently.

Depending on the context, it may be useful to “drop” columns in-
stead of selecting them. This is the same as selecting all columns ex-
cept the ones specified. This is useful when the number of columns to
be dropped is small compared to the total number of columns. Strictly
speaking, we just need to negate the predicate or the regular expression
used to select the columns.

Finally, it is very common to find libraries and framework in which
the order of the columns is important. As a result, columns can be se-
lected by position as well. I find this practice error-prone and I recom-
mend avoiding it whenever possible.

6.1.3 Mutating columns
Mutating is the process of creating new columns. The operation is re-
versible, as the original columns are kept. The new columns are added
to the dataset.

The values in the new column are determined by an expression. The
expression is a function that returns a vector of values given the values
in the other columns. The expression can be a simple function, such as
y = x + 1, or a more complex function, such as y = ifelse(x > 0,

3Regular expressions are very general and powerful, but they are also complex
and error-prone. An alternative is to use some form of hierarchical naming, such as
type.column to express groups of columns.

82 CHAPTER 6. DATA HANDLING

Practical tips

• Use selecting to remove columns that are not relevant to
your analysis;

• Use column names or regular expressions (or hierarchical
names) to select columns;

• Use predicates (many to one, with no aggregation func-
tions) to define the conditions underwhich columns should
be selected;

• Avoid depending on the order of the columns.

1, 0). Here, x and y are the names of an existing and the new column,
respectively.

Onemay also use an aggregation andwindow function in the expres-
sion. This is particularly useful when performing mutation considering
a group. In this case, the returned value is repeated (aggregation func-
tion) for each row of the same group. Like in filtering, the more explicit
you can be about order and groups, the better.

For example, the expression y = cumsum(x) group by category
sort by date will create a new column y with the cumulative sum of
the x column for each category given the order of the rows defined by
the date column.

Sometimes, the same expression canbeused to createmultiple columns.
This is usefulwhen the new columns are related. To do so, one first spec-
ifies the columns in the sameway aswhen selecting columns. Then, one
needs to specify a rule to name the new columns. For instance, x_new
= x + 1 across x matches ^col[0-9]+$.

Practically speaking, mutation can overwrite existing columns. This
is useful when the new column is a replacement for the old one. For-
mally, overwriting is just a sequence of mutation and selection opera-
tions.

6.1.4 Aggregating rows
Wecan aggregate the rows of a dataset to create a newdatasetwith fewer
rows. The operation is not reversible, as the discarded rows are lost. The
columns are also lost, only the new aggregate columns remain.

6.1. DATA HANDLING OPERATORS 83

Practical tips

• Use mutating to create new columns that are relevant to
your analysis;

• Use expressions to define the values of the new columns;

• Use aggregation and window functions in the expression to
create new columns based on groups and order;

• Use the same expression to create multiple columns when
the new columns are related.

The values in the new columns are determined by an aggregation
function. Like filtering and mutation, the aggregation function can be
parametrized by specifying a group and/or an order.

The resulting dataset will contain one row for each group. The val-
ues in the new columns are determined by the aggregation function ap-
plied to the values in the other columns. All columns that define the
groups are usually kept in the resulting dataset. In this case, as expected,
values of such columns are equal for all rows in the same group.

For instance, the aggregation functionmean(x) group by category
will create a newdatasetwith one row for eachdifferent value of category
and a new column with the mean of the x column for each group.

Practical tips

• Use aggregation to summarize the data in a dataset;

• Use aggregation functions to define the values of the new
columns;

• Other columns are lost;

• Use the group and order parameters to define the groups
and the behavior of the aggregation function.

84 CHAPTER 6. DATA HANDLING

6.1.5 Binding datasets
One trivial, yet important, operation is to bind datasets. This is the pro-
cess of combining two or more datasets into a single dataset. The op-
eration is reversible, as the original datasets are kept. The new dataset
contains all the rows and columns of the original datasets.

There are twoways to bind datasets: by rows or by columns. The for-
mer is used to combine datasets that have exactly the same columns but
represent different parts of the same dataset. The latter is used to com-
bine datasets that comprise the same observations (rows) but captures
different aspects of the same dataset.

When binding datasets by rows, the datasets must have the same
columns4. The resulting dataset will contain all the rows of the original
datasets. The columns remain unchanged. It is a good practice to create
a new column that represents the source of each row. For instance, if
each table represents data collected in a different year, one can create a
new column year that contains the year of the data.

When binding datasets by columns, the datasetsmust have the same
number of rows. Each matching row represent the same observation5.
The resulting datasetwill contain all the columns of the original datasets.
The rows remain unchanged.

Practical tips

• Use binding to combine datasets that represent different
parts of the same dataset;

• Use binding by rows to combine datasets that have the same
columns — in this case, create a new column that repre-
sents the source of each row;

• Use binding by columns to combine datasets that have the
same number of rows.

Talk about splitting as the reverse function, and the reasonwhymiss-
ing columns may be a problem. Example of the unit of measurement.

4In practice, it is usually required that they share the same order of the columns as
well. This is not a theoretical requirement, but a common limitation of most libraries.

5Practically speaking, either the order of the rows or a key column is used to match
the rows of the datasets. In both situations, this is equivalent to a join operation by the row
number or the key column; assuming that both datasets contains the same observations.

6.1. DATA HANDLING OPERATORS 85

6.1.6 Joining datasets
Joining is the process of combining two datasets into a single dataset
based on common columns. The operation may not be reversible, con-
sult section 3.2.1 for more details.

The join of two tables is the operation that returns a new table with
the columns of both tables. Let U be the common set of columns. For
each occurring value of U in the first table, the operationwill look for the
same value in the second table. If it finds it, it will create a new rowwith
the columns of both tables. If it does not find it, no row will be created.
This operation assumes that values in U are unique in each table.

The variation described above is usually called natural or inner join.
Three other variations are possible.

• Left join: for each occurring value of U in the first table, the oper-
ation will look for the same value in the second table. If it finds it,
it will create a new row with the columns of both tables. If it does
not find it, it will create a new row with the columns of the first
table and missing values for the columns of the second table.

• Right join: the same as the left join, but the roles of the tables are
reversed.

• Outer join: for each different value of U in both tables, the oper-
ation will create a new row with the columns of both tables. If a
value is missing in one table, it will be filled with a missing value.

Practical tips

• Use joining to integrate datasets;

• Be aware of the risks of joining datasets (section 3.2.1), for
example, that some joins may create invalid rows;

• Use the appropriate variation of the join operation in appli-
cations.

6.1.7 Pivoting and unpivoting
Another important operation is to pivot and unpivot datasets. These
are the processes of transforming a dataset from a long format to a wide

86 CHAPTER 6. DATA HANDLING

format and vice versa. The operations are reversible and they are the
inverse of each other.

Pivoting requires to specify a name column—whose discrete and fi-
nite possible values will become the names of the new columns — and
a value column — whose values will be spread across the rows. All re-
maining columns are considered to be keys, uniquely identifying each
row of new the dataset.

Unpivoting6 is the reverse operation. Onemust specify all the columns
whose names are the values of the before called name column. The val-
ues of these columns will be gathered into a new column. As before, all
remaining columns are considered to be keys.

In practical applications, where not all remaining columns are keys,
one must aggregate rows beforehand.

Table 6.1: Pivoting example.

name year value

A 2019 1
A 2020 2
A 2021 3
B 2019 4
B 2020 5
B 2021 6

name 2019 2020 2021

A 1 2 3
B 4 5 6

The left table is in the long format and the right table is in the
wide format. The name column is year and the value column is
value.

Table 6.1 shows an example of pivoting. The left table is in the long
format and the right table is in the wide format. The name column is
year, the value column is value, and the remaining column is name
which is an unique identifier of the rows in the wide format.

6.1.8 An algebra for statistical transformations
In recent years, some researchers made an effort to create a formal al-
gebra for statistical transformations. The idea is to create a set of op-

6Which Wickham, Çetinkaya-Rundel, and Grolemund call pivot longer.

6.1. DATA HANDLING OPERATORS 87

Practical tips

• Use pivoting to transform datasets from a long format to a
wide format;

• Use unpivoting to transform datasets from a wide format to
a long format;

• Be aware of the need to aggregate rows before unpivoting.

erations that can be combined to create complex statistical transforma-
tions. This is similar to the idea of relational algebra, which is a set of
operations that can be combined to create complex queries.

The difference between relational algebra and a formal algebra for
statistical transformations is that the latter is more complex. This is be-
cause statistical transformations are more complex than queries. For
instance, the concept of missing data is not present in relational alge-
bra, but it is in statistical transformations.

Song, Jagadish, and Alter (2021), for example, propose a formal par-
adigm for statistical data transformation. They present a data model,
an algebra, and a formal language. Their goal is to create a standard for
statistical data transformation that can be used by different statistical
software.

However, in my opinion, the major deficiency of their work is that
they mostly try to “reverse engineer” the operations that are commonly
used in statistical software. This is useful for the translation of code
between different software, but it is not productive to advance in the
theoretical understanding of statistical transformations.

If one ought to tackle the challenge of formally expressing statisti-
cal transformations, I think one should start from the basic operations.
Basic operations mean that they are irreducible, i.e., they cannot be ex-
pressed as a sequence of other operations.

Some thoughts about it:

• Binding columns can be expressed as a join operation, thus it is
not a basic operation.

• Some software provide features that can be better expressed in
other (often simpler) ways. Row naming is an example. It is use-
ful to keep track of the origin of each row, but names can be just

88 CHAPTER 6. DATA HANDLING

another column. I argue for excluding row naming in a formal
algebra.

• Some operations are very useful and recurring, even if they are
not basic. Such operations must be omitted from the formal alge-
bra for the sake of simplicity. However, any software that imple-
ments a language for the formal algebra can provide syntax sugar
for these operations.

• Not defining your algebra in terms of a specific programming lan-
guage is a good practice. This is because the algebra is a theoret-
ical concept and should be independent of any implementation.
It also gives opportunities to rethink the things that commonly
done in a specific way. This can lead to new insights and correct
error-prone practices.

• Pivoting seems to be “different” enough to the other operations to
be considered in the set of basic operations. However, it is not hard
to see that they can be rewritten as combinations with the meta
tables containing the possible values of the attributes (or some sort
of aggregation function).

6.2 Data handling pipeline

Before we study the data handling tasks, we need to understand that a
data handling pipeline is a sequence of operations that does depend on
the input data. This might seem obvious, but the implications are not.

A common error in data handling is to perform operations ad hoc,
usually leading to data leakage. For instance, onemight imputemissing
values before splitting the data into training and testing sets. This is a
mistake because the imputation is based on the entire dataset, including
the testing set.

To avoid this kind of error, onemust declare7 the operations that will
be performed on the data before applying them. This is usually done by
creating the full data handling pipeline beforehand.

The pipeline, like a model, must be “fitted” to the data. This means
that parameters of the operations are not fixed until the first data is given
as input. Subsequent data fed to the pipeline will be handled keeping
the first “learned” parameters.

7This is the declarative nature of data handling operations.

6.2. DATA HANDLING PIPELINE 89

Consider the following example. Suppose we have a dataset with
missing values for variable A. We want to impute themissing values and
then standardizeA. The pipeline is created as follows: D -> impute_zero(A)
-> standardize(A).

The operationimpute_zero(A) is parametrized by the value 0, which,
in this case, is fixed. However, the operationstandardize(A) is parametrized
by the mean and the standard deviation of the values in A. These values
are not fixed until the first data is given as input.

A note about fixed parameters

Even if your data handling pipeline contains operations that have
fixed parameters and can be safely applied to data before the
model search, I strongly recommend that you declare the pipeline
as a whole. This is because it is easier to maintain and reproduce
the data handling process, especially in deployment. Performing
ad hoc handling in your data is a source of errors and important
transformations can be forgotten when receiving new data.

In a practical scenario, the source code of the model searchmethod
includes not only strategies for the model, but also the data handling
pipeline. Moreover, the deployment of themodel includes the data han-
dling pipeline as well. In other words, it does not matter which model
is used, in the example above, the mean and the standard deviation of
the values in A should be stored and used in deployed models.

In terms of reproducibility and validation, having a single consoli-
dated pipeline is crucial.

A note about “filtering” operations

Someoperationsmay conditionally remove rows from the dataset.
For instance, after observing that there exists few missing values
in an important column, one might decide to remove rows with
missing values in it. In production, this means that some new
observations might be discarded before reaching the model itself.
However, the user still expects an answer from the model. In this
case, one must define either a default value for the answer or a
default behavior to handle discarded examples.

90 CHAPTER 6. DATA HANDLING

Slide 6.3: Data handling pipeline

• A data handling pipeline is a sequence of operations that
depend on the input data;

• The pipeline must be declared before applying the opera-
tions;

• The pipeline is fitted to the data;

• The selected pipeline is part of the model search and de-
ployment.

• Even operations that have fixed parameters or that can be
safely applied to data before themodel search should be de-
clared in the pipeline.

XXX: maybe state that before reaching the pipeline data is already
tidy, this way simple integration (not enhancement), pivoting and ag-
gregating are kept outside the pipeline. These operations must depend
only on variable names and not variable values.

6.3 Data transformation

The first task in data handling is data transformation. This is the process
of adjusting the format and the types of the data to make it suitable for
analysis.

Usually, the starting point of data transformation is tomake the data
tidy, i.e., to have each variable in a column and each observation in a
row. Remember that, depending on the problem definition, we target a
particular observational unit. Having a clear picture of the observational
unit is important to define the columns and the rows of the dataset.

Then, when the data format is acceptable, we can perform a series of
operations tomake the column’s types and values suitable formodeling.
The reason for this is that most machine learning methods require the
input variables to follow some restrictions. For instance, somemethods
require the input variables to be real numbers, others require the input
variables are in a specific range, etc.

6.3. DATA TRANSFORMATION 91

6.3.1 Reshaping
TODO: pipeline exceptions: like pivoting and aggregating are kept out-
side the pipeline.

Reshaping is the process of changing the format of the data. The
most common reshaping operations are pivoting and unpivoting, which
we have already discussed. However, there are other reshaping opera-
tions that are useful in practice.

For instance, one can reshape a dataset by splitting a column into
multiple columns. This is useful when a column contains multiple val-
ues that should be separated. This can be done with mutation with ap-
propriate expressions. Some frameworks might provide special func-
tions to do this, usually called splitting functions.

We can also consider reshaping the operations of filtering, selecting,
and aggregating. Filtering is usually done to reduce the scope of the
data, given some conditions on the variables. Selecting is usually done
to remove irrelevant variables or highly correlated ones. Aggregating in
a reshaping task is usually applied together with pivoting to change the
observational unit of the dataset.

Slide 6.4: Reshaping

• Reshaping is the process of changing the format of the data;

• The most common reshaping operations are pivoting and
unpivoting;

• Other common operation include:

– Splitting a column into multiple columns;
– Filtering to reduce the scope of the data;
– Selecting to remove irrelevant variables or highly cor-
related ones;

– Aggregating to change the observational unit of the
dataset.

6.3.2 Type conversion
Type conversion is the process of changing the type of the values in the
columns. This is usually done to make the data suitable for modeling.

92 CHAPTER 6. DATA HANDLING

For instance, some machine learning methods require the input vari-
ables to be real numbers.

The most common type conversions are from categorical to numer-
ical and from numerical to categorical. The former is usually done by
creating dummy variables, i.e., a new column for each possible value
of the categorical variable. This transformation is also known as one-
hot encoding. The latter is usually done by binning (discretizing) the
numerical variable, either by frequency or by range.

Slide 6.5: Type conversion

• Type conversion is the process of changing the type of the
values in the columns;

• Use one-hot encoding to convert categorical variables to nu-
merical;

• Use binning to convert numerical variables to categorical.

6.3.3 Normalization
Normalization is the process of scaling the values in the columns. This is
usually done to keep data in a specific range or to make the data compa-
rable. For instance, some machine learning methods require the input
variables to be in the range [0, 1].

The most common normalization methods are standardization and
rescaling. The former is done by subtracting the mean and dividing by
the standard deviation of the values in the column. The latter is per-
formed so the values are in a specific range, usually [0, 1] or [−1, 1].

Clamping after rescaling

In production, it is common to clamp the values after rescaling.
This is done to avoid the model to make predictions that are out
of the range of the training data.

Related to normalization is the log transformation. This is usually
done to make the data more symmetric or to reduce the effect of out-
liers. The log transformation is the process of taking the logarithm of
the values in the column.

6.3. DATA TRANSFORMATION 93

Slide 6.6: Normalization

• Normalization is the process of scaling the values in the
columns;

• Use standardization to make the values have mean 0 and
standard deviation 1;

• Use rescaling to make the values be in a specific range;

• Use the log transformation to make the data more symmet-
ric or to reduce the effect of outliers.

6.3.4 Sampling
Sampling is the process of selecting a random subset of the data. This
is usually done to reduce the size of the data or to create a balanced
dataset. For instance, some machine learning methods are heavily af-
fected by the number of observations in each class. Also, somemethods
are computationally expensive and a smaller dataset might be enough
to solve the problem.

The most common sampling methods are random sampling and re-
sampling8. The former is done by selecting a random subset of the data.
The latter is done by selecting a random subset of the data with replace-
ment.

While random sampling is useful to reduce the size of the data, re-
sampling can be used to increase the size of the data. (Although this has
some caveats.) Moreover, resampling can also create variations of the
original dataset with the same distribution of the values.

6.3.5 Dimensionality reduction
Dimensionality reduction is the process of reducing the number of vari-
ables in the data. This is usually done to reduce the complexity of the
model or to identify irrelevant variables. The so-called curse of dimen-
sionality is a common problem in machine learning, where the number
of variables is much larger than the number of observations.

There are two main types of dimensionality reduction algorithms:
feature selection and feature extraction. The former is done by selecting

8Resampling is the process of sampling with replacement, sometimes called boot-
strapping.

94 CHAPTER 6. DATA HANDLING

a subset of the variables that leads to the best models. The latter is done
by creating new variables that are combinations of the original ones.

Feature selection can be performed beforemodeling (filter), together
with themodel search (wrapper), or as a part of themodel itself (embed-
ded).

Feature extraction is usually done by linear methods, such as prin-
cipal component analysis (PCA), or by non-linear methods, such as au-
toencoders. These methods are able to compress the information in the
data into a smaller number of variables.

Slide 6.7: Dimensionality reduction

• Dimensionality reduction is the process of reducing the
number of variables in the data;

• Use feature selection to select a subset of the variables that
leads to the best models;

• Use feature extraction to create new variables that are com-
binations of the original ones.

Practice!

Can you identify which data transformation operations are used
to make datasets presented in chapter 3 tidy?

6.4 Data cleaning
Data cleaning is the process of removing errors and inconsistencies from
the data. This is usually done tomake the datamore reliable and to avoid
bias in the analysis.

6.4.1 Dealing with missing data
Since most models do not cope with missing data, it is crucial to deal
with it in the data handling pipelines.

There are four main strategies to deal with missing data:

• Remove the rows with missing data;

6.4. DATA CLEANING 95

• Remove the columns with missing data;

• Impute the missing data;

• Use an indicator variable to mark the missing data.

Removing rows and columns are commonly used when the num-
ber of missing data is small compared to the total number of rows or
columns. However, be aware that removing rows can artificially change
data distribution, especially when themissing data is notmissing at ran-
dom.

Imputing the missing data is usually done by replacing the missing
values with some statistic of the available values in the column, such
as the mean, the median, or the mode. This is a simple and effective
strategy, but it can introduce bias in the data. Also, it is not suitable
when one is not sure whether the missing data is missing because of a
systematic error or phenomenon.

For this case, creating an indicator variable is a good strategy. This is
done by creating a new column that contains a logical value indicating
whether the data is missing or not9. By doing so, the model can learn
the importance of the missing data10.

6.4.2 Dealing with invalid and inconsistent information
Sometimes, during data collection, information is recorded using spe-
cial codes. For instance, the value 9999 might be used to indicate that
the data is missing. Such codes must be replaced withmore appropriate
values before modeling.

Another commonproblem is inconsistent information. For instance,
the same categorymight be represented by different names. This is usu-
ally done by creating a dictionary that maps the different names to a
single one.

It is also useful to check whether all columns that store physical
quantities have the same unit of measurement. If not, one must con-
vert the values to the same unit.

If one knows that a variable has a specific range of values, it is use-
ful to check whether the values are within this range. If not, one must
replace the values wit missing data or with the closest valid value.

9Some kind of imputation is still needed, but we expect the model to deal better with
it

10Sometimes the indicator variable is already present: pregnancy and sex example.

96 CHAPTER 6. DATA HANDLING

6.4.3 Outliers
Outliers are observations that are significantly different from the other
observations. They can be caused by errors in the data collection pro-
cess or by the presence of a different phenomenon. In both cases, it is
important to deal with outliers before modeling.

There are many outliers detection methods, consult TODO.

Slide 6.8: Data cleaning

• Data cleaning is the process of removing errors and incon-
sistencies from the data;

• Use the following strategies to deal with missing data:

– Remove the rows with missing data;
– Remove the columns with missing data;
– Impute the missing data;
– Use an indicator variable to mark the missing data.

• Replace special codes with more appropriate values;

• Create a dictionary to map different names to a single one;

• Check whether all columns that store physical quantities
have the same unit of measurement;

• Check whether the values are within the expected range;

• Use outlier detection methods to deal with outliers.

6.5 Data integration

Data integration is the process of combining data from different sources
into a single dataset. This is usually done to create a more complete
dataset or to create a dataset with a different observational unit.

To perform integration, consider the discussions in sections 3.2.1
and 3.2.3.

Additionally, one must consider the following points:

6.5. DATA INTEGRATION 97

• Sometimes the same column may have different names in differ-
ent datasets. Redundant columns must be removed.

• Separate datasets that share the same variables usually happen be-
cause there is a hidden variable that is not present in the datasets.
During integration, the new variable must be created.

Slide 6.9: Data integration

• Data integration is the process of combining data from dif-
ferent sources into a single dataset;

• Not every join is possible, consider the discussions in sec-
tions 3.2.1 and 3.2.3;

• Remove redundant columns;

• Create new variables to represent the hidden variables.

Hard to incorporate in the pipeline when joins only, but data en-
hancement works better inside the pipeline.

7
Machine learning tasks

They say “Na prática, a teoria é outra,” I say “Se sua teoria
não funciona na prática, ela está errada demais.”

In the previous chapter, we define two fundamental inductive learn-
ing tasks: classification and regression. In real-world applications, how-
ever, we may require different tasks to solve our data science problem.
Descriptive learning tasks are out of the scope of this book, I suggest
reading…. Even restricting ourselves to discuss only inductive learning,
some machine learning tasks comprise a combination of fundamental
tasks.

Also, we show examples of different inductive biases and how the
main learning algorithmswork – symbolic (decision trees), spatial (near-
est neighbors), statistical (naïve Bayes and Bayesian networks), gradient
optimization (neural networks).

7.1 Multiclass

7.2 Manifold learning

7.3 Recommender systems

7.4 Reinforcement learning

99

8
Model evaluation

🗡 It’s dangerous to go alone! Take this.
—Unnamed Old Man, The Legend of Zelda

101

9
Ethical and legal issues

It’s a trap!
— Admiral Ackbar, Star Wars Episode VI: Return of the Jedi

103

Bibliography

Beaumont, P. B. and R. G. Bednarik (2013). In: Rock Art Research 30.1,
pp. 33–54. url: https://search.informit.org/doi/10.3316/informit.
488018706238392.

Benavoli, A., G. Corani, J. Demšar, and M. Zaffalon (2017). “Time for
a Change: a Tutorial for Comparing Multiple Classifiers Through
Bayesian Analysis”. In: Journal of Machine Learning Research 18.77,
pp. 1–36. url: http://jmlr.org/papers/v18/16-305.html.

Breiman, L. (1996). “Bagging predictors”. In: Machine Learning 24.2,
pp. 123–140. doi: 10.1007/BF00058655.

Codd, E. F. (1970). “A Relational Model of Data for Large Shared Data
Banks”. In: Commun. ACM 13.6, pp. 377–387. issn: 0001-0782. doi:
10.1145/362384.362685.

Cortes, C. andV. Vapnik (1995). “Support-vector networks”. In:Machine
Learning 20.3, pp. 273–297. doi: 10.1007/BF00994018.

Cover, T. M. (1965). “Geometrical and Statistical Properties of Systems
of Linear Inequalities with Applications in Pattern Recognition”. In:
IEEE Transactions on Electronic Computers EC-14.3, pp. 326–334.
doi: 10.1109/PGEC.1965.264137.

Fagin, R. (1979). “Normal forms and relational database operators”. In:
Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’79. Boston,Massachusetts: Associa-
tion for ComputingMachinery, pp. 153–160. isbn: 089791001X. doi:

105

https://search.informit.org/doi/10.3316/informit.488018706238392
https://search.informit.org/doi/10.3316/informit.488018706238392
http://jmlr.org/papers/v18/16-305.html
https://doi.org/10.1007/BF00058655
https://doi.org/10.1145/362384.362685
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/PGEC.1965.264137

106 BIBLIOGRAPHY

10 .1145/582095 .582120. url: https : / /doi .org/10 .1145/582095 .
582120.

Grajalez, C. G., E. Magnello, R. Woods, and J. Champkin (2013). “Great
moments in statistics”. In: Significance 10.6, pp. 21–28. doi: 10.1111/
j.1740-9713.2013.00706.x.

Hillis, W. D. (1985). “The Connection Machine”. Hillis, W.D.: The Con-
nection Machine. PhD thesis, MIT (1985). Cambridge, MA, USA:
Massachusetts Institute of Technology. url: http://hdl.handle.net/
1721.1/14719.

Ho, T. K. (1995). “Random decision forests”. In: Proceedings of 3rd Inter-
national Conference on Document Analysis and Recognition. Vol. 1,
278–282 vol.1. doi: 10.1109/ICDAR.1995.598994.

Hunt, E. B., J. Marin, and P. J. Stone (1966). Experiments in Induction.
New York, NY, USA: Academic Press.

Ifrah, G. (1998). The Universal History of Numbers, from Prehistory to the
Invention of the Computer. First published in French, 1994. London:
Harvill. isbn: 1 86046 324 x.

Kelleher, J. D. and B. Tierney (2018). Data science. The MIT Press.
Le Cun, Y. (1986). “Learning Process in an Asymmetric Threshold Net-

work”. In: Disordered Systems and Biological Organization. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 233–240. isbn: 978-3-
642-82657-3.

Quinlan, J. R. (1986). “Induction of Decision Trees”. In:Machine Learn-
ing 1, pp. 81–106. url: https://api.semanticscholar.org/CorpusID:
13252401.

Rumelhart, D. E., G. E.Hinton, andR. J.Williams (1986). “Learning rep-
resentations by back-propagating errors”. In:Nature 323.6088, pp. 533–
536. doi: 10.1038/323533a0.

Schapire, R. E. (1990). “The strength of weak learnability”. In:Machine
Learning 5.2, pp. 197–227. doi: 10.1007/BF00116037.

Song, J., H. V. Jagadish, and G. Alter (2021). “SDTA: An Algebra for
Statistical Data Transformation”. In: Proc. of 33rd International Con-
ference on Scientific and Statistical Database Management (SSDBM
2021). Tampa, FL,USA:Association forComputingMachinery, p. 12.
doi: 10.1145/3468791.3468811.

Takens, F. (2006). “Detecting strange attractors in turbulence”. In: Dy-
namical SystemsandTurbulence,Warwick 1980: proceedings of a sym-
posium held at the University of Warwick 1979/80. Springer, pp. 366–
381.

https://doi.org/10.1145/582095.582120
https://doi.org/10.1145/582095.582120
https://doi.org/10.1145/582095.582120
https://doi.org/10.1111/j.1740-9713.2013.00706.x
https://doi.org/10.1111/j.1740-9713.2013.00706.x
http://hdl.handle.net/1721.1/14719
http://hdl.handle.net/1721.1/14719
https://doi.org/10.1109/ICDAR.1995.598994
https://api.semanticscholar.org/CorpusID:13252401
https://api.semanticscholar.org/CorpusID:13252401
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/BF00116037
https://doi.org/10.1145/3468791.3468811

BIBLIOGRAPHY 107

Vapnik, V. N. (1999a). “An overview of statistical learning theory”. In:
IEEE Transactions on Neural Networks 10.5, pp. 988–999. doi: 10 .
1109/72.788640.

— (1999b). The nature of statistical learning theory. 2nd ed. Springer-
Verlag New York, Inc. isbn: 978-1-4419-3160-3.

Velleman, P. F. and L. Wilkinson (1993). “Nominal, Ordinal, Interval,
and Ratio Typologies are Misleading”. In: The American Statistician
47.1, pp. 65–72. doi: 10.1080/00031305.1993.10475938.

Vincent,M.W. (1997). “A corrected 5NFdefinition for relational database
design”. In: Theoretical Computer Science 185.2. Theoretical Com-
puter Science inAustralia andNewZealand, pp. 379–391. issn: 0304-
3975. doi: https://doi.org/10.1016/S0304-3975(97)00050-9. url:
https://www.sciencedirect.com/science/article/pii/S0304397597000509.

Wickham,H. (2014). “TidyData”. In: Journal of Statistical Software 59.10,
pp. 1–23. doi: 10.18637/jss.v059.i10. url: https://www.jstatsoft.
org/index.php/jss/article/view/v059i10.

Wickham, H., M. Çetinkaya-Rundel, and G. Grolemund (2023). R for
Data Science: Import, Tidy, Transform, Visualize, and Model Data.
2nd ed. O’Reilly Media.

Zumel, N. and J. Mount (2019). Practical Data Science with R. 2nd ed.
Manning.

https://doi.org/10.1109/72.788640
https://doi.org/10.1109/72.788640
https://doi.org/10.1080/00031305.1993.10475938
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00050-9
https://www.sciencedirect.com/science/article/pii/S0304397597000509
https://doi.org/10.18637/jss.v059.i10
https://www.jstatsoft.org/index.php/jss/article/view/v059i10
https://www.jstatsoft.org/index.php/jss/article/view/v059i10

	About this book
	Course plan
	Brief history of data science
	The term ``data science''
	Timeline and historical markers
	Timeline of data handling
	Timeline of data analysis

	Preliminaries
	Algorithms and data structures
	Algoritmic paradigms
	Computational complexity
	Data structures

	Set theory
	Set operations

	Linear algebra
	Operations
	Systems of linear equations
	Eigenvalues and eigenvectors

	Probability
	Random variables
	Expectation and moments
	Probability distributions
	Permutations and combinations

	Fundamental data concepts
	Fundamental data theory
	Phenomena
	Measuments
	Knowledge extraction

	Structured data
	Database normalization
	Tidy data
	Bridging normalization, tidyness, and data theory
	Data semantics and interpretation

	Unstructured data

	Data science project
	CRISP-DM
	ZN approach
	Roles of the ZN approach
	Processes of the ZN approach

	Agile methodology
	SCRUM framework
	Our approach
	The roles of our approach
	The principles of our approach

	Statistical learning theory
	Hypothesis and setup
	The learning problem
	ERM inductive principle
	Consistency of learning processes
	Definition of consistency
	Nontrivial consistency

	Rate of convergence of learning processes
	Generalization ability of learning processes
	Construction of learning machines
	Data classification methods
	Regression estimation methods

	Data handling
	Data handling operators
	Filtering rows
	Selecting columns
	Mutating columns
	Aggregating rows
	Binding datasets
	Joining datasets
	Pivoting and unpivoting
	An algebra for statistical transformations

	Data handling pipeline
	Data transformation
	Reshaping
	Type conversion
	Normalization
	Sampling
	Dimensionality reduction

	Data cleaning
	Dealing with missing data
	Dealing with invalid and inconsistent information
	Outliers

	Data integration

	Machine learning tasks
	Multiclass
	Manifold learning
	Recommender systems
	Reinforcement learning

	Model evaluation
	Ethical and legal issues
	Bibliography

