DATA SCIENCE PROJECT

AN INDUCTIVE LEARNING APPROACH

F.A.N. VERRI

DATA SCIENCE PROJECT

AN INDUCTIVE LEARNING APPROACH

FILIPE A. N. VERRI

WIP

July 11, 2024

Disclaimer: This version is a work in progress. Many parts of the book have been drafted
with the help of GitHub Copilot and may not be revised yet by the author. The author is
not responsible for any misinformation contained in this version of the book.

Book cover image was created with the assistance of Gemini and DALL-E 2.

Scripture quotations are from The ESV® Bible (The Holy Bible, English Standard Ver-
sion®), copyright © 2001 by Crossway, a publishing ministry of Good News Publishers.
Used by permission. All rights reserved.

Data science project: an inductive learning approach © 2023-2024 by Filipe A. N. Verri
is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International. To view
a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0.

https://github.com/features/copilot
https://gemini.google.com
https://openai.com/dall-e-2
http://creativecommons.org/licenses/by-nc-nd/4.0/

Contents

About this book

Course plan

1 Brief history of data science
1.1 Theterm “datascience”
1.2 Timeline and historical markers

1.2.1
1.2.2

Timeline of data handling
Timeline of data analysis

2 Preliminaries
2.1 Algorithms and data structures

211
2.1.2
2.1.3

Computational complexity
Algoritmic paradigms
Datastructures

22 Settheory,

221
222
223

Setoperations L.
Set operations properties
Relation to Boolean algebra.

2.3 Linearalgebra

231
2.3.2
233

Operations
Systems of linear equations
Eigenvalues and eigenvectors

24 Probability L

24.1
2.4.2
243
244
2.4.5

Axioms of probability and main concepts
Randomvariables
Expectation and moments
Common probability distributions
Permutations and combinations

iii

N O\ W -

12

19

iv

3

CONTENTS

Fundamental data concepts 43
3.1 Datascience definition 45
3.2 Thedatascience continuum 46
3.3 Fundamentaldatatheory 46
331 Phenomena 46

332 Measurements 48

3.3.3 Knowledge extraction 49

34 Structureddata. 50
3.4.1 Database normalization. 51

342 Tidydata 55

3.4.3 Bridging normalization, tidyness, and data theory 63

3.44 Data semantics and interpretation 66

3.5 Unstructureddata 67
Data science project 69
41 CRISP-DM it 71
42 ZNapproach 72
4.2.1 Rolesofthe ZNapproach 73

4.2.2 Processes of the ZN approach 74

4.3 Agilemethodology 74
44 SCRUM framework 75
45 OQurapproach. 76
4.5.1 Therolesofourapproach. 77

4.5.2 The principles of our approach 77

4.5.3 Solution search framework 79
Statistical learning theory 81
5.1 Hypothesisandsetup 84
52 Thelearningproblem 85
52.1 Afewremarks and definitions 86

5.3 ERM inductive principle 88
5.4 Consistency of learning processes 88
5.4.1 Definition of consistency 89

5.4.2 Nontrivial consistency 91

5.5 Rate of convergence of learning processes 91
5.6 Generalization ability of learning processes 91
5.7 Construction of learning machines 91
5.7.1 Data classification methods. 91

5.7.2 Regression estimation methods 91

58 Learningbias. 92

5.8.1 Perceptron learningbias 94

CONTENTS v

6

8

5.8.2 Multi-layer perceptron learning bias 94
5.8.3 Decision tree learning bias 95
5.8.4 k-nearest neighbors learningbias 98
Data handling 929
6.1 Datahandlingoperators 101
6.1.1 Filteringrows 102
6.1.2 Selectingcolumns 103
6.1.3 Mutatingcolumns 104
6.1.4 Aggregatingrows 105
6.1.5 Bindingdatasets 106
6.1.6 Joiningdatasets 107
6.1.7 Pivoting and unpivoting 108
6.1.8 An algebra for statistical transformations 109
6.2 Datahandling pipeline 111
6.3 Datatransformation 112
6.3.1 Reshaping 113
6.3.2 Typeconversion 113
6.3.3 Normalization 113
634 Sampling 114
6.3.5 Dimensionality reduction. 114
6.4 Datacleaning. 115
6.4.1 Dealing with missingdata 115
6.4.2 Dealing with invalid and inconsistent information 116
643 Outliers. 116
6.5 Dataintegration 117
Model evaluation 119
7.1 Binary classification evaluation 121
7.1.1 Confusionmatrix 121
7.1.2 Performance measures 121
7.2 Regression estimation evaluation 123
7.3 Probabilistic classification evaluation 124
7.3.1 Receiver operating characteristic. 125
7.3.2 Detection error trade-off 126
7.4 Othervariations 128
Validation and experimental planning 129
8.1 Elements of an experimentalplan 131
8.2 Estimating expected performance 131

8.2.1 Crossvalidation 135

8.2.2 Validationmethods
8.3 Comparing strategies
8.3.1 About nesting experiments
84 Grouping

9 Ethical, privacy and legal issues

9.1 Ethicaland moralvalues
9.2 Privacy and data protection
9.2.1 Homomorphicencryption
9.2.2 Federatedlearning
9.3 Major legal frameworks
9.3.1 General Data Protection Regulation (GDPR) . .
9.3.2 California Consumer Privacy Act (CCPA)

Bibliography

Glossary

141
143
143
143
143
143
143
143

145

149

About this book

I intend to make this book forever free and open-
source. You can find (and contribute to) the source
code at github.com/verri/dsp-book.

If you like this book, consider buying me a coffee at
buymeacoffee.com/verri. All donations are used to
improve this book, including editing and proofread-
ing.

Ifyou find any typos, grammar errors, incomplete ma-
terial or have any suggestions, please open an issue at
github.com/verri/dsp-book/issues.

Students can found a printable version (A4 paper,
double-sided, short-edge spiral binding) of this book
at comp.ita.br/~verri/dsp-book-print.

https://github.com/verri/dsp-book
https://www.buymeacoffee.com/verri
https://github.com/verri/dsp-book/issues
https://comp.ita.br/~verri/dsp-book-print

viii ABOUT THIS BOOK

This book comprises the lectures notes of the course PO-235 Data
Science Project. I hope someday it becomes an actual book. For now,
beware many typos, grammar errors, ugly typesetting, disconnected ma-
terial, etc.

Also, it is important to highlight that:

« This is not a Machine Learning book, and I do not intend to ex-
plain how specific ML algorithms work.

« This contains some kind of introductory material on data science.
Although Iintroduce the fundamental concepts, I expect you have
strong mathematical and statistics background.

« An artificial constraint I have imposed in the material (for the
sake of the course) is that I only consider predictive methods, more
specifically inductive ones. I do not address topics such as clus-
tering, association-rules mining, transductive learning, anomaly
detection, time series forecasting, reinforced learning, etc.

I have decided to work on this material because the books I like on
data science are either

« too broad and too shallow, in the sense they hide many mathemat-
ical foundations and focus on just explaining what data science is
and where it is applied;

« too tool-centric, in the sense that they focus only on a specific tool-
box or programming language; or

« toomachine-learning-y, exposing the functioning of some machine
learning algorithms and missing the foundations of learning and/or
practical aspects.

So...I expect my approach on the subject provide:
« awareness of all steps in a data science project;

« deeper focus (than most books) on data handling, describing the
semantics of dataset operators instead of restraining ourselves with
a specific tool;

« deeper focus (than most books) on why machine learning works,
increasing awareness of its pitfalls and limitations;

ix

deeper focus (than most books) on correct evaluation and valida-
tion (pre-deployment) of machine learning models.

This book will probably cover the following material:

Brief history of data science.

Background topics.

Fundamental data concepts.

Stages in a data science project.

Data handling.

Inductive learning and principles of statistical learning theory.
Experimental planning for data science.

Model evaluation and Bayesian analysis.

Documentation and deployment.

Ethical and legal issues in data science.

Privacy-preserving computational approaches.

Course plan

In the following, I present the course plan for PO-235 and CMC-16.

Any questions about the classes should be sent via Google Class-
room. If your question is of general interest, please use the main stream.
If your question is personal and about a specific assignment or grade,
please use the private stream.

Xi

PO-235 Data science project

Course plan (2024)
Prof. Filipe A. N. Verri

Important: Only graduate students are allowed to take this course.
Number of students: Approx. 20
Course load: 3-0-0-4

Requirements: Advanced programming skills, strong statistics back-
ground, and beginner-level machine-learning skills.

Course program: Brief history of data science. Fundamental data
concepts. Stages in a data science project. Data Infrastructure. Data in-
tegration from multiple sources. Data engineering and shaping. Induc-
tive learning and principles of statistical learning theory. Application of
machine learning models in real-world problems. Experimental plan-
ning for data science. Model evaluation and Bayesian analysis. Doc-
umentation and deployment. Ethical and legal issues in data science.
Privacy-preserving computational approaches.

Goals: Providing the theoretical background and the practical con-
cepts to develop an end-to-end data science project for an inductive task.

Teaching methodology: Expository classes in common classroom,
using whiteboard, slide presentations, coding examples, books and sci-
entific papers. Supplementary didactic materials will be available in
Google Classroom. The development of the case study will happen dur-
ing home study hours, including programming and scientific paper writ-
ing. All classes will be given in English. Students are encouraged to ask
questions in English, but Portuguese is also allowed. All written and
oral assignments must be in English.

Grading: Two individual written tests in the 1 quarter (T; and T,)
and another in the 2™ quarter (T3). Also, a group activity that includes
writting a scientific paper (optional), developing a data science product,
and a 30 minutes presentation (L).

Final grades will be calculated as
1MQ =TT, 2" Q =4/TLL, Exam = L.

Case study: At most 6 groups will be formed. Each group will be re-
sponsible for a case study. Students must choose a real-world problem
and develop a data science project, including data collection, data han-
dling, inductive learning, validation, documentation, and deployment.
The results must be presented in a 30 minutes presentation. Extra points
will be given to groups that write a scientific paper about the case study.
The trained models must be incorporated in a data science product, such
as a web application, a mobile application, or a web service.

Bibliography:

o N. Zumel and J. Mount (2019). Practical Data Science with R.
2nd ed. Manning.

« H. Wickham, M. Cetinkaya-Rundel, and G. Grolemund (2023). R
for Data Science: Import, Tidy, Transform, Visualize, and Model
Data. 2nd ed. O’Reilly Media.

+ J.D. Kelleher and B. Tierney (2018). Data science. The MIT Press.

The first two books — Zumel and Mount (2019) and Wickham, Cetinkaya-
Rundel, and Grolemund (2023) — are available online for free.

Any required extra material will be made available in Google Class-
room.

Calendar: The expected schedule is presented below.

1%t Quarter

Week Topics

Brief history of data science (chapter 1)

1 Preliminaries (chapter 2)

Written test

Fundamental data concepts (chapter 3)

Stages in a data science project (chapter 4)

Statistical learning theory (chapter 5)

Data handling (chapter 6)

(NN | AW N

Written test

2" Quarter

£
(¢
o,

Topics

Evaluation (chapter 7)

Experimental planning (chapter 8)

Ethics, privacy and legal issues (chapter 9)

Written test

Project discussion

Presentations

o OB | |WIN| -

Case studies will be presented during exam weeks. At most 3 case
studies will be presented per day, with 30 minutes for each presentation
and 20 minutes for questions.

CMC-16 Data science practices

Course plan (2024)
Prof. Filipe A. N. Verri

Important: Only ITA’s undergraduate students are allowed to take
this course.

Number of students: Approx. 20 (no more than 40 students)
Course load: 2-0-1-5
Requirements: CMC-13 or CMC-15

Course program: Brief history of Data Science. Stages in a Data Sci-
ence project. Tidy Data. Data integration from multiple sources. Data
engineering and shaping. Inductive learning and statistical learning
theory. Experimental planning for Data Science. Model evaluation and
Bayesian Analysis. Documentation and deployment. Privacy-preserving
computational approaches.

Goals: Further studying the practical aspects of Data Science (in rela-
tion to CMC-13) and providing the mathematical foundations to ensure
the correct usage of Data Science techniques.

The specific goals are:

« Understanding the steps and people involved in a Data Science
project;

» Developing an end-to-end case study, including data collection,
data transformation, inductive learning, validation, documenta-
tion, and deployment; and

+ Critically evaluate the results and implications of the case study.

Teaching methodology: Expository classes in common classroom,
using whiteboard, slide presentations, coding examples, books and sci-
entific papers. Supplementary didactic materials will be available in
Google Classroom. The development of the case study will happen dur-
ing laboratory classes and home study hours.

Grading: One individual written test in the 1% and another in the 2"
quarter. Software development and oral presentation about the case
study (in groups) for the final exam.

Case study: At most 6 groups will be formed. Each group will be re-
sponsible for a case study. Students must choose a real-world problem
and develop a data science project, including data collection, data han-
dling, inductive learning, validation, documentation, and deployment.
The results must be presented in a 30 minutes presentation. The trained
models must be incorporated in a data science product, such as a web
application, a mobile application, or a web service.

Bibliography:

o N. Zumel and J. Mount (2019). Practical Data Science with R.
2nd ed. Manning.

« H. Wickham, M. Cetinkaya-Rundel, and G. Grolemund (2023). R
for Data Science: Import, Tidy, Transform, Visualize, and Model
Data. 2nd ed. O’Reilly Media.

« J.D. Kelleher and B. Tierney (2018). Data science. The MIT Press.
The first two books — Zumel and Mount (2019) and Wickham, Cetinkaya-

Rundel, and Grolemund (2023) — are available online for free.
Any extra material will be made available in Google Classroom.

Calendar: The expected schedule is presented below.

1%t Quarter

Week Topics

Brief history of Data Science

Stages in a Data Science project

Tidy Data and data integration from multiple sources
Data engineering and shaping

Inductive learning and statistical learning theory

Case study discussion and definitions
Written test

OO AW

24 Quarter

Week Topics

Model evaluation

Experimental planning for Data Science
Bayesian Analysis

Documentation and deployment
Privacy-preserving computational approaches
Written test

OO UL AW

Presentations and discussions

Brief history of data science

“Begin at the beginning,” the King said gravely, “and go on till
you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

There are many points-of-view about the beginning of data science. For
the sake of contextualization, I separate the topic in two approaches: the
history of the term itself and a broad timeline of data-driven sciences
highlighting the important figures in each age.

I believe that the history of the term is important to understand the
context of the discipline. Along the years, the term has been used to
label rather different fields of study. Before I present my view on the
term, I present the views of two important figures in the history of data
science: Peter Naur and William Cleveland.

Moreover, studying the main facts and figures in the history of data-
driven sciences enables us to understand the evolution of the field and
hopefully to guide us to evolve it further. Most of the important theo-
ries and methods in data science have been developed simultaneously
in different fields, such as statistics, computer science, and engineering.
The history of data-driven sciences is long and rich. I present a timeline
of the ages of data handling and the most important markers of data
analysis.

I do not intend to provide a comprehensive history of data science.
I aim to provide enough context to support the development of the ma-
terial in the following chapters, sometimes avoiding directions that are
not relevant in the inductive learning context.

CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Chapter remarks
Contents
1.1 Theterm “datascience” 3
1.2 Timeline and historical markers 6
1.2.1 Timeline of data handling 6
1.2.2 Timeline of dataanalysis 12
Context

« The term “data science” is recent and has been used to label rather
different fields.

« The history of data-driven sciences is long and rich.

« Many important theories and methods in data science have been
developed simultaneously in different fields.

« The history of data-driven sciences is important to understand the
evolution of the field.

Objectives

« Understand the history of the term “data science.”

« Understand the major milestones in the history of data-driven sci-
ences.

« Identify important figures in the history of data-driven sciences.
Takeways
« We have evolved both in terms of theory and application of data-

driven sciences.

« There is no consensus on the definition of data science (including
which fields it encompasses).

« However, there is enough evidence to support data science as a
new science.

1.1. THE TERM “DATA SCIENCE” 3

1.1 The term “data science”

The term data science is recent and has been used to label rather dif-
ferent fields of study. In the following, I emphasize the history of a few
notable usage of the term.

Peter Naur (1928 -2016) The term “data science” itself was coined in
the 1960s by Peter Naur (/naua/). Naur was a Danish computer scientist
and mathematician who made significant contributions to the field of
computer science, including his work on the development of program-
ming languages'. His ideas and concepts laid the groundwork for the
way we think about programming and data processing today.

Naur disliked the term computer science and suggested it be called
datalogy or data science. In the 1960s, the subject was practised in Den-
mark under Peter Naur’s term datalogy, which means the science of data
and data processes.

He coined this term to emphasize the importance of data as a fun-
damental component of computer science and to encourage a broader
perspective on the field that included data-related aspects. At that time,
the field was primarily centered on programming techniques, but Naur’s
concept broadened the scope to recognize the intrinsic role of data in
computation.

In his book?, “Concise Survey of Computer Methods”, he parts from
the concept that data is “a representation of facts or ideas in a formalised
manner capable of being communicated or manipulated by some pro-
cess.”® Note however that his view of the science only “deals with data
[...]while the relation of data to what they represent is delegated to other
fields and sciences.”

It is interesting to see the central role he gave to data in the field of
computer science. His view that the relation of data to what they rep-
resent is delegated to other fields and sciences is still debatable today.
Some scientists argue that data science should focus on the techniques
to deal with data, while others argue that data science should encom-
pass the whole business domain. A depiction of Naur’s view of data
science is shown in fig. 1.1.

1He is best remembered as a contributor, with John Backus, to the Backus—Naur form
(BNF) notation used in describing the syntax for most programming languages.

2P. Naur (1974). Concise Survey of Computer Methods. Lund, Sweden: Studentlitter-
atur. ISBN: 91-44-07881-1. URL: http://www.naur.com/Conc.Surv.html.

3L H. Gould (ed.): ‘IFIP guide to concepts and terms in data processing’, North-
Holland Publ. Co., Amsterdam, 1971.

http://www.naur.com/Conc.Surv.html

4 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Figure 1.1: Naur’s view of data science.

data science

computer science domain expertise

For Naur, data science studies the techniques to deal with data,
but he delegates the meaning of data to other fields.

William Cleveland (born 1943) In 2001, a prominent statistician
used the term “data science” in his work to describe a new discipline
that comes from his “plan to enlarge the major areas of technical work
of the field of statistics*” In 2014, that work was republished’. He ad-
vocates the expansion of statistics beyond theory into technical areas,
significantly changing statistics. Thus, it warranted a new name.

As a result, William Swain Cleveland II is credited to define data
science as it is most used today. He is a highly influential figure in the
fields of statistics, machine learning, data visualization, data analysis
for multidisciplinary studies, and high performance computing for deep
data analysis.

In his view, data science is the “modern” statistics, where it is en-
larged by computer science methods and domain expertise. An illus-
tration of Cleveland’s view of data science is shown in fig. 1.2. It is
important to note that Cleveland never defined a explicit list of com-
puter science fields and business domains that should be included in
the new discipline. The main idea is that statistics should rely on com-

4W. S. Cleveland (2001). “Data Science: An Action Plan for Expanding the Technical
Areas of the Field of Statistics”. In: ISI Review. Vol. 69, pp. 21-26.

SW. S. Cleveland. Data Science: An Action Plan for the Field of Statistics. Statistical
Analysis and Data Mining, 7:414-417, 2014. reprinting of 2001 article in ISI Review, Vol
69.

1.1. THE TERM “DATA SCIENCE” 5

Figure 1.2: Cleveland’s view of data science.

data science

expertise

<

D>

For Cleveland, data science is the “modern” statistics, where it is
enlarged by computer science and domain expertise.

putational methods and that the domain expertise should be considered
in the analysis.

Buzzword or a new science? Be aware that scientific literature has
no consensus on the definition of data science, and it is still considered
by some to be a buzzword®.

Most of the usages of the term in literature and in the media are
either a rough reference to a set of data-driven techniques or a market-
ing strategy. Naur (fig. 1.1) and Cleveland (fig. 1.2) are among the few
that try to carefully define the term. However, both of them do not see
data science as an independent field of study, but an enlarged scope of
an existing science. I disagree; the social and economical demand for
data-driven solutions led to an evolution in our understanding of the
challenges we are facing. As a result, we see many “data scientist” be-
ing hired and many “data science degrees” programs emerging.

In chapter 3, I dare to provide a (yet another) definition for the term.
I argue that its object of study can be precisely established to support it
as a new science.

%Press, Gil. “Data Science: What’s The Half-Life of a Buzzword?”.
Forbes. Available at https://www.forbes.com/sites/gilpress/2013/08/19/
data-science-whats- the-half-life- of-a-buzzword/

https://www.forbes.com/sites/gilpress/2013/08/19/data-science-whats-the-half-life-of-a-buzzword/
https://www.forbes.com/sites/gilpress/2013/08/19/data-science-whats-the-half-life-of-a-buzzword/

6 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

1.2 Timeline and historical markers

Kelleher and Tierney (2018)” provides an interesting timeline of data-
driven methods and influential figures in the field. I reproduce it here
with some changes, including some omissions and additions. On the
subject of data analysis, I include some of the exceptional remarks from
Vapnik (1999)3.

I first address data handling — which I include data sources, collec-
tion, organization, storage, and transformation —, and then data anal-
ysis and knowledge extraction.

1.2.1 Timeline of data handling

The importance of collecting and organizing data goes without saying.
Data fuels analysis and decision making. In the following, I present
some of the most important milestones in the history of data handling.

Figure 1.3: Timeline of the ages of data handling.

3,800 BC - 18M c. 1890 - 1960 1970s 1980 -1990 2000 - present
1 1]

I]]]]]

T T T T T T 1

r T
Pre-digital Age Digital Age Formal Age Integrated Age Ubiquitous Age

Figure 1.3 illutrates the proposed timeline. Ages are not strict bound-
aries, but rather periods where some important events happened. Also,
observe that the timescaleis not linear. The Pre-digital Age is the longest
period, and one could divide it into smaller periods. My choices of ages
and their boundaries are motivated by didactic reasons.

Pre-digital age

We can consider the earliest records of data collection to be the notches
on sticks and bones to keep tracking of passing of time. The Lebombo
bone, a baboon fibula with notches, is probably the earliest known math-
ematical object. It was found in the Lebombo Mountains located be-
tween South Africa and Eswatini. They estimate it is more than 40,000
years old. It is conjectured to be a tally stick, but its exact purpose is

7]. D. Kelleher and B. Tierney (2018). Data science. The MIT Press.
8V. N. Vapnik (1999). The nature of statistical learning theory. 2nd ed. Springer-Verlag
New York, Inc. ISBN: 978-1-4419-3160-3.

1.2. TIMELINE AND HISTORICAL MARKERS 7

unknown. Its 29 notches suggests that may have been used as a lunar
phase counter. However, since it is broken at one end, the 29 notches
may or may not be the total number®.

Another important milestone in the history of data collection is the
record of demographic data. One of first known census was conducted
in 3,800 BC in the Babylonian Empire. It was ordered to assess the pop-
ulation and resources of his empire. Records were stored on clay tiles!°.

Since the early forms of writing, humanity abilities to record events
and information increased significantly. The first known written records
date back to around 3,500 BC, the Sumerian archaic (pre-cuneiform)
writing. This writing system was used to represent commodities using
clay tokens and to record transactions'!.

“Data storage” was also a challenge. Some important devices that
increased our capacity to register textual information are the Sumerian
clay tablets (3,500 BC), the Egyptian papyrus (3,000 BC), the Roman wax
tablets (100 BC), the codex (100 AD), the Chinese paper (200 AD), the
printing press (1440), and the typewriter (1868).

Besides those improvements in unstructured data storage, at least
in the Western and Middle Eastern world, there are no significant ad-
vances in structured data collection until the 19" century. (A Eastern
timeline research seems much hard to perform. Unfortunally, I left it
out in this book.)

I consider a major influential figure in the history of data collection
to be Florence Nightingale (1820 — 1910). She was a passionate statis-
tician and probably the first person to use statistics to influence pub-
lic and official opinion. The meticulous records she kept during the
Crimean War (1853 - 1856) were the evidence that saved lives — part of
the mortality came from lack of sanitation. She was also the first to use
statistical graphics to present data in a way that was easy to understand.
She is credited with developing a form of the pie chart now known as the
polar area diagram. She also reformed healthcare in the United King-
dom and is considered the founder of modern nursing; where great part
of the work was to collect data in a standardized way to quickly draw
conclusions!?.

9P. B. Beaumont and R. G. Bednarik (2013). In: Rock Art Research 30.1, pp. 33-54.
URL: https://search.informit.org/doi/10.3316/informit.488018706238392.

10C. G. Grajalez et al. (2013). “Great moments in statistics”. In: Significance 10.6,
pp. 21-28. DOI: 10.1111/§.1740-9713.2013.00706.X.

G, Ifrah (1998). The Universal History of Numbers, from Prehistory to the Invention of
the Computer. First published in French, 1994. London: Harvill. ISBN: 1 86046 324 x.

12C. G. Grajalez et al. (2013). “Great moments in statistics”. In: Significance 10.6,

https://search.informit.org/doi/10.3316/informit.488018706238392
https://doi.org/10.1111/j.1740-9713.2013.00706.x

8 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Digital age

In the modern period, several devices were developed to store digital'3
information. One particular device that is important for data collection
is the punched card. It is a piece of stiff paper that contains digital in-
formation represented by the presence or absence of holes in predefined
positions. The information can be read by a mechanical or electrical de-
vice called a card reader. The earliest famous usage of punched cards
was by Basile Bouchon (1725) to control looms. Most of the advances
until the 1880s were about the automation of machines (data process-
ing) using hand-punched cards, and not particularly specialized for data
collection.

However, the 1890 census in the United States was the first to use
machine-readable punched cards to tabulate data. Processing 1880 cen-
sus data took eight years, so the Census Bureau contracted Herman
Hollerith (1860 - 1929) to design and build a tabulating machine. He
founded the Tabulating Machine Company in 1896, which later merged
with other companies to become International Business Machines Cor-
poration (IBM) in 1924. Later models of the tabulating machine were
widely used for business applications such as accounting and inventory
control. Punched card technology remained a prevalent method of data
processing for several decades until more advanced electronic comput-
ers were developed in the mid-20™ century.

The invention of the digital computer is responsible for a revolution
in data handling. The amount of information we can capture and store
increased exponentially. ENIAC (1945) was the first electronic general-
purpose computer. It was Turing-complete, digital, and capable of being
reprogrammed to solve a full range of computing problems. It had 20
words of internal memory, each capable of storing a 10-digit decimal
integer number. Programs and data were entered by setting switches
and inserting punched cards.

For the 1950 census, the United States Census Bureau used the UNI-
VAC I (Universal Automatic Computer I), the first commercially pro-
duced computer in the United States'*.

It goes without saying that digital computers have become much
more powerful and sophisticated since then. The data collection process

pp. 21-28. poOI: 10.1111/§.1740-9713.2013.00706.X.

B3Digital means the representation of information in (finite) discrete form. The term
comes from the Latin digitus, meaning finger, because it is the natural way to count using
fingers. Digital here do not mean electronic.

14Read more in https://www.census.gov/history/www/innovations/.

https://doi.org/10.1111/j.1740-9713.2013.00706.x
https://www.census.gov/history/www/innovations/

1.2. TIMELINE AND HISTORICAL MARKERS 9

has been easily automated and scaled to a level that was unimaginable
before. However, “where” storing data is not the only challenge. “How”
to store data is also a challenge. The next period of history addresses this
issue.

Formal age

In 1970, Edgar Frank Codd (1923 - 2003), a British computer scientist,
published a paper entitled “A Relational Model of Data for Large Shared
Data Banks”?>. In this paper, he introduced the concept of a relational
model for database management.

A relational model organizes data in tables (relations) where each
row represents a record and each column represents an attribute of the
record. The tables are related by common fields. Codd showed means to
organize the tables of a relational database to minimize data redundancy
and improve data integrity. Section 3.4.1 provides more details on the
topic.

His work was a breakthrough in the field of data management. The
standardization of relational databases led to the development of Struc-
tured Query Language (SQL) in 1974. SQL is a domain-specific lan-
guage used in programming and designed for managing data held in a
Relational Database Management System (RDBMS).

As aresult, a new challenge rapidly emerged: how to aggregate data
from different sources. Once data is stored in a relational database, it is
easy to query and manage it. However, data is usually stored in different
databases, and it is not always possible to directly combine them.

Integrated age

The solution to this problem was the development of the Extract, Trans-
form, Load (ETL) process. ETL is a process in data warehousing re-
sponsible for extracting data from several sources, transforming it into
a format that can be analyzed, and loading it into a data warehouse.

The concept of data warehousing dates back to the late 1980s when
IBM researchers Barry Devlin and Paul Murphy developed the “busi-
ness data warehouse.”

Two major figures in the history of ETL are Ralph Kimball (born
1944) and Bill Inmon (born 1945), both American computer scientists.

I5E. F. Codd (1970). “A Relational Model of Data for Large Shared Data Banks”. In:
Commun. ACM 13.6, pp. 377-387. ISSN: 0001-0782. DOI: 10.1145/362384.362685.

https://doi.org/10.1145/362384.362685

10 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Although they differ in their approaches, they both agree that data ware-
housing is the foundation for Business Intelligence (BI) and analytics,
and that data warehouses should be designed to be easy to understand
and fast to query for business users.

A famous debate between Kimball and Inmon is the top-down ver-
sus bottom-up approach to data warehousing. Inmon’s approach is top-
down, where the data warehouse is designed first and then the data
marts'® are created from the data warehouse. Kimball’s approach is
bottom-up, where the data marts are created first and then the data
warehouse is created from the data marts.

One of the earliest and most famous case studies of the implemen-
tation of a data warehouse is that of Walmart. In the early 1990s, Wal-
mart faced the challenge of managing and analyzing vast amounts of
data from its stores across the United States. The company needed a so-
lution that would enable comprehensive reporting and analysis to sup-
port decision-making processes. The solution was to implement a data
warehouse that would integrate data from various sources and provide
a single source of truth for the organization.

Ubiquitous age

The last and current period of history is the ubiquitous age. It is char-
acterized by the proliferation of data sources.

The ubiquity of data generation and the evolution of data-centric
technologies have been made possible by a multitude of figures across
various domains.

« Vinton Gray Cerf (born 1943) and Robert Elliot Kahn (born 1938),
often referred to as the “Fathers of the Internet,” developed the
TCP/IP protocols, which are fundamental to internet communi-
cation.

« Tim Berners-Lee (born 1955), credited with inventing the World
Wide Web, laid the foundation for the massive data flow on the
internet.

« Steven Paul Jobs (1955 - 2011) and Stephen Wozniak (born 1950),
from Apple Inc., and William Henry Gates III (born 1955), from
Microsoft Corporation, were responsible for the introduction of

16 A data mart is a specialized subset of a data warehouse that is designed to serve the
needs of a specific business unit, department, or functional area within an organization.

1.2. TIMELINE AND HISTORICAL MARKERS 11

personal computers, leading to the democratization of data gen-
eration.

» Lawrence Edward Page (born 1973) and Sergey Mikhailovich Brin
(born 1973), the founders of Google, transformed how we access
and search for information.

» Mark Elliot Zuckerberg (born 1984), the co-founder of Facebook,
played a crucial role in the rise of social media and the generation
of vast amounts of user-generated content.

In terms of data handling, this change of landscape has brought
about the development of new technologies and techniques for data
storage and processing. Especially the development of NoSQL databases
and distributed computing frameworks.

NoSQL databases are non-relational databases that can store and
process large volumes of unstructured, semi-structured, and structured
data. They are highly scalable and flexible, making them ideal for big
data applications.

Some authors argue that the rise of big data is characterized by the
five V’s of big data: Volume, Velocity, Variety, Veracity, and Value. The
amount of data generated is massive, the speed at which data is gener-
ated is high, the types of data generated are diverse, the quality of data
generated is questionable, and the value of data generated is high.

Once massive amounts of unstructured data became available, the
need for new data processing techniques arose. The development of
distributed computing frameworks such as Apache Hadoop and Apache
Spark enabled the processing of massive amounts of data in a distributed
manner.

Douglass Read Cutting and Michael Cafarella, the developers of Apache
Hadoop, proposed the Hadoop Distributed File System (HDFS) and MapRe-
duce, which are the cornerstones of the Hadoop framework, in 2006.
Hadoop’s distributed storage and processing capabilities enabled orga-
nizations to handle and analyze massive volumes of data.

Currently, Google holds a patent for MapReduce!”. However, their
framework inherits from the architeture proposed in Hillis (1985)'® the-

17http://static.googleusercontent.com/media/research.google.com/es/us/archive/
mapreduce-osdi0O4.pdf

18w. D. Hillis (1985). “The Connection Machine”. Hillis, W.D.: The Connection Ma-
chine. PhD thesis, MIT (1985). Cambridge, MA, USA: Massachusetts Institute of Tech-
nology. URL: http://hdl.handle.net/1721.1/14719.

http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf
http://hdl.handle.net/1721.1/14719

12 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

sis. MapReduce is not particularly novel, but its simplicity and scalabil-
ity made it popular.

Nowadays, another important topic is Internet of Things (IoT). IoT
is a system of interrelated computing devices that communicate with
each other over the internet. The devices can be anything from cell-
phones, coffee makers, washing machines, headphones, lamps, wear-
able devices, and almost anything else you can think of. The reality of
IoT increased the challenges of data handling, especially in terms of data
storage and processing.

In summary, we currently live in a world where data is ubiquitous
and comes in many different forms. The challenge is to collect, store,
and process this data in a way that is meaningful and useful, also re-
specting privacy and security.

1.2.2 Timeline of data analysis

The way we think about data and knowledge extraction has evolved sig-
nificantly over the years. In the following, I present some of the most
important milestones in the history of data analysis and knowledge ex-
traction.

Figure 1.4: Timeline of the ages of data analysis.

3,800 BC - 16th c. 17th c. - 19th c. 20th c. — present

I]]]]]]]]
i T T T T T T T 1

Summary statistics Probability advent Learning from data

Figure 1.4 illutrates the proposed timeline. I consider changes of
ages to be smooth transitions, and not strict boundaries. The theoretical
advances are slower than the technological ones — the latter influences
more data handling than data analysis —, so not much has changed
since the beginning of the 20" century.

Summary statistics

The earliest known records of systematic data analysis date back to the
first censuses. The term statistics itself refer to the analysis of data about
the state, including demographics and economics. That early (and sim-
plest) form of statistical analysis is called summary statistics, which con-
sists of describing data in terms of its central tendencies (e.g. arithmetic
mean) e variability (e.g. range).

1.2. TIMELINE AND HISTORICAL MARKERS 13

Probability advent

However, after the seventeenth century, the foundations of modern prob-
ability theory were laid out. Important figures for developing the prob-
ability theory are Blaise Pascal (1623 — 1662), Pierre de Fermat (1607 -
1665), Christiaan Huygens (1629 - 1695), and Jacob Bernoulli (1655 -
1705).

The foundation methods brought to life the field of statistical infer-
ence. In the following years, important results were achieved.

Bayes’ rule Reverend Thomas Bayes (1701 — 1761) was an English
statistician, philosopher, and presbyterian minister. He is known for
formulating a specific case of the theorem that bears his name: Bayes’
theorem. The theorem is used to calculate conditional probabilities us-
ing an algorithm (his Proposition 9, published in 1763) that uses evi-
dence to calculate limits on an unknown parameter.

The Bayes’ rule is the foundation of learning from evidence, once it
allows us to calculate the probability of an event based on prior knowl-
edge of conditions that might be related to the event. Classifiers based
on Naive Bayes — the application of Bayes’ theorem with strong in-
dependence assumptions between known variables — is likely to have
been used since the second half of the eighteenth century.

Gauss’ method of least squares Johann Carl Friedrich Gauss (1777
- 1855) was a German mathematician and physicist who made signif-
icant contributions to many fields in mathematics and sciences. Circa
1794, he developed the method of least squares for calculating the orbit
of Ceres to minimize the impact of measurement error?.

Playfair’s data visualization William Playfair (1759 — 1823) was a
secret agent on behalf of Great Britain during its war with France in the
1790s. He invented several types of diagram between 1780s and 1800s,
such as the line, area and bar chart of economic data, and the pie chart
and circle graph to show proportions.

19The method was first published by Adrien-Marie Legendre (1752 - 1833) in 1805,
but Gauss claimed in 1809 that he had been using it since circa 1794.

14 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Learning from data

In the twentieth century and beyond, new advances were made in the
field of statistics. The development of learning machines enabled the
development of new techniques for data analysis.

The recent advances in computation and data storage are crucial for
the large-scale application of these techniques.

Fisher’s discriminant analysis In the 1930s, Ronald Fisher (1890 -
1962) developed discriminant analysis, which was considered a problem
of constructing a decision rule to assign a vector to one of two categories
using given probability distribution functions®.

Shannon’s information theory The field, that studies quantifica-
tion, storage and communication of information, was originally estab-
lished by the works of Harry Nyquist (1889 — 1976) and Ralph Hart-
ley (1888 — 1970) in the 1920s, and Claude Shannon (1916 - 2001) in
the 1940s. Information theory brought many important concepts to the
field of data analysis, such as entropy, mutual information, and infor-
mation gain. This theory is the foundation of several machine learning
algorithms.

K-Nearest Neighbors In 1951, Evelyn Fix (1904 - 1965) and Joseph
Lawson Hodges Jr. (1922 - 2000) wrote a technical report entitled “Dis-
criminatory Analysis, Nonparametric Discrimination: Consistency Prop-
erties.” In this paper, they proposed the k-nearest neighbors algorithm,
which is a non-parametric method used for classification and regres-
sion. The algorithm marks a shift from the traditional parametric meth-
ods — and purely statistical — to non-parametric methods.

Rosenblatt’s perceptron Inthe 1960s, Frank Rosenblatt (1928 - 1971)
developed the perceptron, the first model of a learning machine. While
the idea of a mathematical neuron was not new, he was the first to de-
scribe the model as a program, showing the ability of the perceptron to
learn simple tasks such as the logical operations AND and OR.

20 After, Rosenblatt’s work, however, it was used to solve inductive inference as well.

1.2. TIMELINE AND HISTORICAL MARKERS 15

Hunt inducing trees In 1966, Hunt, Marin, and Stone’s book?! de-
scribed a way to induce decision trees from data. The algorithm is based
on the concept of information entropy and is a precursor of the Quin-
lan’s ID3 algorithm?? and its variations. These algorithm gave rise to the
field of decision trees, which is a popular method for classification and
regression.

Empirical risk minimization principle Although many learning
machines where developed until the 1960s, they did not advanced sig-
nificantly the understanding of the general problem of learning from
data. Between 1960s and 1986 — before the backpropagation algorithm
was proposed —, the field of practical data analysis was basically stag-
nant. The main reason for that was the lack of a theoretical framework
to support the development of new learning machines.

However, these years were not completely unfruitful. As early as
1968, Vladimir Vapnik (born 1936) and Alexey Chervonenkis (1938 —
2014) developed the foundamental concepts of VC entropy and VC di-
mension for the data classification problems. As a result, a novel induc-
tive principle was proposed: the Empirical Risk Minimization (ERM)
principle. This principle is the foundation of statistical learning theory.

Resurgence of neural networks In 1986, researchers developed in-
dependently a method to optimize coefficients of a neural network?>.
The method is called backpropagation and is the foundation of the resur-
gence of neural networks.

This rebirth of neural networks happened in a scenario very differ-
ent from the 1960s. The availability of data and computational power
fueled a new approach to the problem of learning from data. The new
approach preferred the use of simple algorithms and intuitive models
over theoretical models, fueling areas such as bioinspired computing
and evolutionary computation.

2lE. B. Hunt, J. Marin, and P. J. Stone (1966). Experiments in Induction. New York, NY,
USA: Academic Press.

22J. R. Quinlan (1986). “Induction of Decision Trees”. In: Machine Learning 1, pp. 81~
106. URL: https://api.semanticscholar.org/CorpusID:13252401.

23Y. Le Cun (1986). “Learning Process in an Asymmetric Threshold Network”. In:
Disordered Systems and Biological Organization. Berlin, Heidelberg: Springer Berlin Hei-
delberg, pp. 233-240. ISBN: 978-3-642-82657-3; D. E. Rumelhart, G. E. Hinton, and R. J.
Williams (1986). “Learning representations by back-propagating errors”. In: Nature
323.6088, pp. 533-536. DOL: 10.1038/323533a0.

https://api.semanticscholar.org/CorpusID:13252401
https://doi.org/10.1038/323533a0

16 CHAPTER 1. BRIEF HISTORY OF DATA SCIENCE

Ensembles Following the new approach, ensemble methods were de-
veloped. Based on ideas of boosting?* and bagging?’, ensemble methods
combine multiple learning machines to improve the performance of the
individual machines.

The difference between boosting and bagging is the way the ensem-
ble is built. In boosting, the ensemble is built sequentially, where each
new model tries to correct the errors of the previous models. In bagging,
the ensemble is built in parallel, where each model is trained indepen-
dently with small changes in the data. The most famous bagging ensem-
ble methods are random forests?®, while XGBoost, a gradient boosting
method?’, has been extensively used in machine learning competitions.

Support vector machines In 1995, Cortes and Vapnik?® proposed
the Support Vector Machine (SVM) algorithm, a learning machine based
on the VC theory and the ERM principle. Based on Cover’s theorem?,
they developed a method that finds the optimal hyperplane that sepa-
rates two classes of data in a high-dimensional space with the maximum
margins. The resulting method led to practical and efficient learning
machines.

Deep learning revolution Although the ideia of neural networks
with multiple layers were around since the 1960s, only in the late 2000s
the field of deep learning caught the attention of the scientific commu-
nity by achieving state-of-the-art results in computer vision and natural
language processing. Yoshua Bengio, Geoffrey Hinton and Yann LeCun
are recognized for their for conceptual and engineering breakthroughs
in the field, winning the 2018 Turing Award*.

24R. E. Schapire (1990). “The strength of weak learnability”. In: Machine Learning 5.2,
pp- 197-227. poI: 10.1007/BF00116037.

251, Breiman (1996). “Bagging predictors”. In: Machine Learning 24.2, pp. 123-140.
DOI: 10.1007/BF00058655.

26T, K. Ho (1995). “Random decision forests”. In: Proceedings of 3rd International
Conference on Document Analysis and Recognition. Vol. 1, 278-282 vol.1. DOL: 10.1109/
ICDAR.1995.598994.

27], H. Friedman (2001). “Greedy function approximation: A gradient boosting ma-
chine.” In: The Annals of Statistics 29.5, pp. 1189-1232. DOIL: 10.1214/a0s/1013203451.
URL: https://doi.org/10.1214/a0s/1013203451.

28C. Cortes and V. N. Vapnik (1995). “Support-vector networks”. In: Machine Learning
20.3, pp. 273-297. DOL: 10.1007/BF00994018.

2T, M. Cover (1965). “Geometrical and Statistical Properties of Systems of Linear In-
equalities with Applications in Pattern Recognition”. In: IEEE Transactions on Electronic
Computers EC-14.3, pp. 326-334. DOI: 10.1109/PGEC.1965.264137.

30https://awards.acm.org/about/2018-turing

https://doi.org/10.1007/BF00116037
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/PGEC.1965.264137
https://awards.acm.org/about/2018-turing

1.2. TIMELINE AND HISTORICAL MARKERS 17

Generative deep models Nowadays, generative deep models are a
hot topic in machine learning. They are a class of statistical models that
can generate new data instances. They are used in unsupervised learn-
ing to discover hidden structures in unlabeled data (e.g. clustering),
and in supervised learning to generate new synthetic data instances.
The most famous generative models are the generative transformers and
generative adversarial networks.

LUSI learning theory In 2010s, Vapnik and Izmailov®! proposed the
Learning using Statistical Inference (LUSI) principle, which is an exten-
sion of the statistical learning theory. The LUSI theory is based on the
concept of statistical invariants, which are properties of the data that
are preserved under transformations. The theory is the foundation of
the learning from intelligent teachers paradigm. They regard the LUSI
theory as the next step in the evolution of learning theory, calling it the
“complete statistical theory of learning”.

31V, N. Vapnik and R. Izmailov (2015). “Learning with Intelligent Teacher: Similarity
Control and Knowledge Transfer”. In: Statistical Learning and Data Sciences. Ed. by A.
Gammerman, V. Vovk, and H. Papadopoulos. Cham: Springer International Publishing,
pp. 3-32. ISBN: 978-3-319-17091-6.

Preliminaries

Maar ik maak steeds wat ik nog niet kan om het te leeren kun-
nen.

— Vincent van Gogh, The Complete Letters of Vincent Van
Gogh, Volume Three

Foundamental concepts in data science come from a variety of fields,
including mathematics, statistics, computer science, optimization the-
ory, and information theory. This chapter provides a brief overview of
the main computational, mathematical and statistical concepts in data
science.

The goal is not to provide a comprehensive treatment of these topics,
but to consolidate notations and definitions that are used throughout
the book. The reader is encouraged to consult the references provided
at the end of each topic for a more in-depth treatment. Statisticians with
strong programming background and computer scientists with strong
statistics background will probably not find much new here.

I first introduce the main concepts in algorithms and data struc-
tures, which are the building blocks of computational thinking. Then, I
present the basic concepts in set theory and linear algebra, which are im-
portant mathematical foundations for data science. Finally, I introduce
the main concepts in probability theory, the cornerstone of statistical
learning and inference.

If your are familiar with these topics, you can safely skip this chap-
ter. Otherwise, I encourage you to read it carefully, as it will help you
understand the rest of the book.

19

20 CHAPTER 2. PRELIMINARIES
Chapter remarks
Contents
2.1 Algorithms and data structures 21
2.1.1 Computational complexity 21
2.1.2 Algoritmic paradigms 22
2.1.3 Datastructures 27
22 Settheory 29
2.2.1 Setoperations, 29
2.2.2 Set operations properties 30
2.2.3 Relation to Boolean algebra. 31
23 Linearalgebra 31
231 Operations oL 32
2.3.2 Systems of linear equations 33
2.3.3 Eigenvalues and eigenvectors 34
2.4 Probability L 34
2.4.1 Axioms of probability and main concepts 34
2.4.2 Randomvariables 35
2.4.3 Expectation and moments 36
2.4.4 Common probability distributions 39
2.4.5 Permutations and combinations 41
Context

« Data science relies on a variety of mathematical and computa-
tional concepts.

« The main concepts are algorithms, data structures, set theory, lin-
ear algebra, and probability theory.

Objectives

« Introduce a brief overview of the main computational, mathemat-
ical and statistical concepts in data science.

« Remind the reader the main definitions and properties of these
concepts.

« Consolidate notations and definitions that are used throughout
the book.

2.1. ALGORITHMS AND DATA STRUCTURES 21

2.1 Algorithms and data structures

Algorithms are step-by-step procedures for solving a problem. They are
used to manipulate data structures, which are ways of organizing data
to solve problems. They are realized in programming languages, which
are formal languages that can be used to express algorithms.

My suggestion of a comprehensive book about algorithms and data
structures is Cormen et al. (2022).

2.1.1 Computational complexity

The computational complexity of an algorithm is the amount of resources
it uses to run as a function of the size of the input. The most common
resources are time and space.

Usually, we are interested in the asymptotic complexity of an algo-
rithm, i.e. how the complexity grows as the size of the input grows. The
most common notation for asymptotic complexity is the Big-O notation.

Big-O notation Let f and g be functions from the set of natural num-
bers to the set of real numbers, i.e. f,g : N - R. We say that f is O(g)
if there exists a constant ¢ > 0 such that f(n) < cg(n) for all n > ny,
where n, is a natural number. We can order functions by their asymp-
totic complexity. For example, O(1) < O(logn) < O(n) < O(nlogn) <
0(n?) < 0(2") < O(n!)>.

The asymptotic analysis of algorithms is usually done in the worst-
case scenario, i.e. the maximum amount of resources the algorithm uses
for any input of size n. Thus, it gives us an upper bound on the com-
plexity of the algorithm. In other words, an algorithm with complexity
0O(g(n)) is guaranteed to run in at most cg(n) time for some constant c.

It does not mean, for instance, that an algorithm with time complex-
ity O(n) will always run faster than an algorithm with time complexity
O(n?), but that the former will run faster for a large enough input size.

An important property of the Big-O notation is that

O(f) + 0(g) = O(max(f, g)),

i.e. if an algorithm has two sequential steps with time complexity O(f)
and O(g), the highest complexity is the one that determines the overall
complexity.

IT. H. Cormen et al. (2022). Introduction to Algorithms. 4th ed. The MIT Press, p. 1312.
ISBN: 9780262046305.
2Throughout this book, we consider logn = log, n.

22 CHAPTER 2. PRELIMINARIES

2.1.2 Algoritmic paradigms

Some programming techniques are used to solve a wide variety of prob-
lems. They are called algorithmic paradigms. The most common ones
are listed below.

Divide and conquer The problem is divided into smaller subprob-
lems that are solved recursively. The solutions to the subproblems are
then combined to give a solution to the original problem. Some example
algorithms are merge sort, quick sort, and binary search.

Algorithm 2.1: Binary search algorithm.

Data: A sorted array a = [ay, ay, ..., a,] and a key x
Result: True if x is in a, false otherwise

11« 1;

27 < n;

3 whilel <rdo

o ome| T

5 if x = a,, then
6 return true
7 if x < a,, then
3 r—m-—1;

9 else

10 l«m+1;

11 return false

An iterative algorithm that searches for a key in a sorted array.

Consider as an example the algorithm 2.1 that solves the binary search
problem. Given a n-elements sorted arraya = [a;, a,, ..., ay],a; < a; <
--- < a,, and a key x, the algorithm returns true if x is in A and false oth-
erwise. The algorithm works by dividing the array in half at each step
and comparing the key with the middle element. Each time the key is
not found, the search space is reduced by half.

Divide and conquer algorithms can be implemented using recur-
sion. Recursion is also a algorithmic paradigm where a function calls it-
self to solve smaller instances of the same problem. The recursion stops
when the problem is small enough to be solved directly.

2.1. ALGORITHMS AND DATA STRUCTURES 23

Algorithm 2.2: Recursive binary search algorithm.

1 function bsearch([a;, a,, ..., a,], x) is
2 if n = 0 then

3 return false

o me|2f
5 if x = a,, then

6 return true

7 if x < a,,, then

8 return bsearch([ay, ..., a,,_1],X)
9 else

10 return bsearch([a,,,1, .-, ay], X)

A recursive algorithm that searches for a key in a sorted array.
Note that trivial conditions — n = 0 and key found — are handled
first, so the recursion stops when the problem is small enough.

Algorithm 2.2 shows a recursive implementation of the binary search
algorithm. The smaller instances, or so called base cases, are when the
array is empty or the key is found in the middle. Other conditions — key
is smaller or greater than the middle element — are handled by calling
the function recursively with the left or right half of the array.

This solution — both algorithms — has a worst-case time complexity
of O(logn). The search space is halved at each step, thus, in the i-th
iteration, the remaining number of elements in the array is n/2i"!. In
the worst-case, the algorithm stops when the search space has size 1 or

smaller, i.e.
n

2i-1

Note this strategy leads to such a low time complexity that we can

solve large instances of the problem in a reasonable amount of time.

Consider the case of an array with 20 = 18,446,744,073,709,551,616
elements, the algorithm will find the key in at most 65 steps.

=1 = i=1+logn.

24 CHAPTER 2. PRELIMINARIES

Greedy algorithms The problem is solved with incremental steps,
each of which is locally optimal. The overall solution is not guaranteed
to (but might) be optimal. Some example algorithms are Dijkstra’s algo-
rithm and Prim’s algorithm. Greedy algorithm are usually very efficient
in terms of time complexity — see more in the following.

One example of suboptimal greedy algorithm is a heuristic solution
for the knapsack problem. The knapsack problem is a combinatorial op-
timization problem where the goal is to maximize the value of items in
a knapsack without exceeding its capacity. The problem is mathemati-
cally defined as

n
maximize Z VX,
i=1

n
subject to Z w;x; < W,
i=1
where v; is the value of item i, w; is the weight of item i, x; is a binary
variable that indicates if item i is in the knapsack, and W is the capacity
of the knapsack.

Algorithm 2.3: Heuristic solution for the knapsack problem.

Data: A list of n items, each with a value v; and a weight
w;, and a capacity W

Result: The binary variable x; for each item i that

maximizes the total value

1 Sort the items in decreasing order of value;

2 V0

3 x; < 0, Vi

4 fori <« 1tondo

5 if w; < W then

6 x; < 1;

7 V< V+4u;

8 W< W-—-w;

9 return x;, Vi

A greedy algorithm that solves suboptimally the knapsack prob-
lem. The algorithm iterates over the items in decreasing order of
value and puts the item in the knapsack if it fits.

2.1. ALGORITHMS AND DATA STRUCTURES 25

An algorithm that finds a suboptimal solution for the knapsack prob-
lem is shown in algorithm 2.3. It iterates over the items in decreasing
order of value and puts the item in the knapsack if it fits. The algorithm
is suboptimal because there might exist small-value items that, when
combined, would fit in the knapsack and yield a higher total value.

The most costly operation in the algorithm is the sorting of the items
in decreasing order of value, which has a time complexity® of O(nlog n).

Brute force The problem is solved by trying all possible solutions.
Most of the time, brute force algorithms have exponential time complex-
ity, leading to impractical solutions for large instances of the problem.
On the other hand, brute force algorithms are usually easy to implement
and understand, as well as guaranteed to find the optimal solution.

In the previous example, a brute force algorithm for the knapsack
problem would try all possible combinations of items and select the one
that maximizes the total value without exceeding the capacity. One can
easily see that the time complexity of such an algorithm is O(2"), where
n is the number of items, as there are 2" possible combinations of items.
Such an exhaustive search is impractical for large n, but it is guaranteed
to find the optimal solution.

One should avoid brute force algorithms whenever possible, as they
are usually too costly to be practical. However, they are useful for small
instances of the problem, for verification of the results of other algo-
rithms, and for educational purposes.

Backtracking The problem is solved incrementally, one piece at a
time. If a piece does not fit, it is removed and replaced by another piece.
Some example algorithms are the naive solutions for N-queens problem
and for the Sudoku problem. Backtracking, as a special case of brute
force, often leads to exponential (or worse) time complexity.

Many times, backtracking algorithms are combined with other tech-
niques to reduce the search space and make the algorithm more effi-
cient. For example, the backtracking algorithm for the Sudoku problem
is combined with constraint propagation to reduce the number of pos-
sible solutions.

3Considering the worst-case time complexity of the sorting algorithm, consult T. H.
Cormen et al. (2022). Introduction to Algorithms. 4th ed. The MIT Press, p. 1312. ISBN:
9780262046305 for more details.

26 CHAPTER 2. PRELIMINARIES

A Sudoku puzzle consists of an n X n grid, divided into n subgrids
of size y/n x y/n. The goal is to fill the grid with numbers from 1 to n
such that each row, each column, and each subgrid contains all numbers
from 1 to n but no repetitions. The most common grid size is 9 X 9.

Figure 2.1: Backtracking to solve a Sudoku puzzle.

1 1
1

2
2

1
1124 1124 1124 1124

4112 4|11|2 4112 4112

2 2 2 2

A Sudoku puzzle — in this case, 4 X 4 — is solved by trying all
possible numbers in each cell and backtracking when a number
does not fit. The solution is found when all cells are filled and the
constraints are satisfied. Arrows indicate the backtracking steps.
The question mark indicates an empty cell that needs to be filled
at that step. Constraints violation are shown in gray.

2.1. ALGORITHMS AND DATA STRUCTURES 27

An illustration of backtracking to solve a 4 X 4 Sudoku puzzle* is
shown in fig. 2.1. The puzzle is solved by trying all possible numbers in
each cell and backtracking when a number does not fit. The solution is
found when all cells are filled and the constraints are satisfied. Arrows
indicate the the steps of the backtracking algorithm. Every time a con-
straint is violated — indicated in gray —, the algorithm backtracks to
the previous cell and tries a different number.

One can easily see that a puzzle with m missing cells has n" possible
solutions. For small values of m and n, the algorithm is practical, but for
large values, it becomes too costly.

2.1.3 Data structures

Data structures are ways of organizing data to solve problems. The most
common ones are listed below. A comprehensive material about the
properties and implementations of data structures can be found in Cor-
men et al. (2022)°.

Arrays An array is a homogeneous collection of elements that are ac-
cessed by an integer index. The elements are usually stored in contigu-
ous memory locations. In the scope of this book, it is equivalent to a
mathematical vector whose element’s type are not necessarily numeri-
cal. Thus, a n-elements array a is denoted by [a;, a,, ..., a,], where the
iin q; is the index of the element.

Stacks A stack is a collection of elements that are accessed in a last-
in-first-out (LIFO) order. Elements are added to the top of the stack and
removed from the top of the stack. In other words, only two operations
are allowed: push (add an element to the top of the stack) and pop (re-
move the top element). Only the top element is accessible.

Queues A queueisa collection of elements that are accessed in a first-
in-first-out (FIFO) order. Elements are added to the back of the queue
and removed from the front of the queue. The two operations allowed
are enqueue (add an element to the back of the queue) and dequeue
(remove the front element). Only the front and back elements are ac-
cessible.

4Smaller puzzles are more didactic, but the same principles apply to larger puzzles.
ST.H. Cormen et al. (2022). Introduction to Algorithms. 4th ed. The MIT Press, p. 1312.
ISBN: 9780262046305.

28 CHAPTER 2. PRELIMINARIES

Trees A tree is a collection of nodes. Each node contains a value and
a list of references to its children. The first node is called the root. A
node with no children is called a leaf. No cycles are allowed in a tree,
i.e. a child cannot be an ancestor of its parent. The most common type
of tree is the binary tree, where each node has at most two children.

Mathematically, a binary tree is a recursive data structure. A binary
tree is either empty or consists of a root node and two binary trees, called
the left and right children. Thus, a binary tree T is

o if it is empty, or
"~ |(v,T;,T,) ifit hasavalue v and two children T; and T,.

Note that the left and right children are themselves binary trees. If T is
aleaf,then T; = T, = @.

This properties makes it easy to represent a binary tree using paren-
theses notation. For example, (1, (2,3, ®),(3,d, D)) is a binary tree
with root 1, left child 2, and right child 3.

Graphs A graph is also a collection of nodes. Each node contains a
value and a list of references to its neighbors; the references are called
edges. A graph can be directed or undirected. A graph is directed if the
edges have a direction.

Mathematically, a graph is a pair G = (V,E), where V is a set of
vertices and E € V X V is a set of edges. An edge is a pair of vertices,
i.e. e = (v;,v5), where v;,v; € V. If the graph is directed, the edge is an
ordered pair, i.e. e = (v;,v;) # (v}, V;).

Not only each node can hold a value, but also each edge can have
a weight. A weighted graph is a graph where there exists a function
w : E — R that assigns a real number to each edge.

A graphical representation of a directed graph with four vertices and
five edges is shown in fig. 2.2. The vertices are numbered from 1 to 4,
and the edges are represented by arrows.

Another common representation of a graph is the adjacency matrix.
An adjacency matrix is a square matrix A of size n X n, where n is the
number of vertices. The i, j-th entry of the matrix is 1 if there is an edge
from vertex i to vertex j, and 0 otherwise. The adjacency matrix of the
graph in fig. 2.2 is

—_ o O O
S O O
S O
O = O O

2.2. SET THEORY 29
Figure 2.2: A graph with four vertices and five edges.

4 3

1 2

A graph with four vertices and five edges. Vertices are numbered

from 1 to 4, and edges are represented by arrows. The graph is
directed, as the edges have a direction.

—

_—

2.2 Set theory

A set is a collection of elements. The elements of a set can be anything,
including other sets. The elements of a set are unordered, and each ele-
ment is unique. The most common notation for sets is the curly braces
notation, e.g. {1, 2, 3}.

Some special sets are listed below.

Universe set The universe set is the set of all elements in a given con-
text. It is denoted by Q.

Emptyset The empty set is the set with no elements. It is denoted by
the symbol @. Depending on the context, it can also be denoted by {}.

2.2.1 Set operations

The basic operations on sets are union, intersection, difference, and
complement.

Union The union of two sets A and B is the set of elements that are
in A or B. It is denoted by A U B. For example, the union of {1, 2, 3} and
{3,4,5}is{1,2,3,4,5}.

Intersection The intersection of two sets A and B is the set of ele-
ments that are in both A and B. It is denoted by A N B. For example, the
intersection of {1, 2, 3} and {3, 4, 5} is {3}.

30 CHAPTER 2. PRELIMINARIES

Difference The difference of two sets A and B is the set of elements
that are in A but not in B. It is denoted by A \ B. For example, the
difference of {1, 2,3} and {3, 4, 5} is {1, 2}.

Complement The complement of a set A is the set of elements that
are not in A. It is denoted by A° = Q \ A.

Inclusion Inclusion is a relation between sets. A set A is included in
a set B if all elements of A are also elements of B. It is denoted by A C B.

2.2.2 Set operations properties

Union and intersection are commutative, associative and distributive.
Thus, given sets A, B, and C, the following statements hold:

o Commutativity: AUB=BUAandANB=BNA;
« Associativity: (AUB)UC = AU(BUC)and (ANB)NC = AN(BNC);

« Distributivity: AUBBNC)=(AUB)N(AuC)andAN(BUC) =
ANnB)UuANCQO).

The difference operation can be expressed in terms of union and in-
tersection as
A\B=AnB"

The complement of the union of two sets is the intersection of their
complements, i.e.
(AUB)* = A°n B-.

Similarly, the complement of the intersection of two sets is the union of
their complements, i.e.

(AN B)¢ = A° U B-.

This property is known as De Morgan’s laws.
In terms of inclusion, given sets A, B, and C, the following state-
ments hold:

* Reflexity: A C A;
« Antisymmetry: A C Band B C A ifand only if A = B;

« Transitivity: A C Band B C C implies A C C.

2.3. LINEAR ALGEBRA 31

2.2.3 Relation to Boolean algebra

Set operations are closely related to Boolean algebra. In Boolean alge-
bra, the elements of a set are either true or false, many times represented
by 1 and 0, respectively. The union operation is equivalent to the logical
OR operation, expressed by the symbol V; and the intersection operation
is equivalent to the logical AND operation, expressed by the symbol A.
The compliment operation is equivalent to the logical NOT operation,
expressed by the symbol —.

The distributive property of set operations is equivalent to the dis-
tributive property of Boolean algebra. Important properties like De Mor-
gan’s laws also hold in Boolean algebra, i.e. (A Vv B) = A A 7B and
“1(AAB)=-AV B.

Boolean algebra is the foundation of digital electronics and com-
puter science. The logical operations are implemented in hardware us-
ing logic gates, and the logical operations are used in programming lan-
guages to control the flow of a program.

Reader interested in more details about Boolean algebra and Dis-
crete Mathematics should consult Rosen (2018)°.

2.3 Linear algebra

Linear algebra is the branch of mathematics that studies vector spaces
and linear transformations. It is a fundamental tool in many areas of
science and engineering. The basic objects of linear algebra are vectors
and matrices.

Vector A vector is an ordered collection of numbers. It is denoted by
a bold lowercase letter, e.g. v = [v;];—;,.., is a vector of length n.

Matrix A matrix is a rectangular collection of numbers. It is denoted
by an uppercase letter, e.g. A = (a;j)i=1,...n; j=1,...,m i the matrix with
n rows and m columns.

Tensor Tensors are generalizations of vectors and matrices. A tensor
of rank k is a multidimensional array with k indices. Scalars are tensors
of rank 0, vectors are tensors of rank 1, and matrices are tensors of rank
2. Tensors are commonly used in machine learning and physics.

SK. H. Rosen (2018). Discrete Mathematics and Its Applications. 8th ed. McGraw Hill,
p. 1120. 1SBN: 9781259676512.

32 CHAPTER 2. PRELIMINARIES

2.3.1 Operations

The main operations in linear algebra are presented below.

Addition The sum of two vectors v and w is the vector v + w whose
i-th entry is v; + w;. The sum of two matrices A and B is the matrix A+ B
whose i, j-th entry is a;; + b;;. (The same rules apply to subtraction.)

Scalar multiplication The product of a scalar « and a vector v is the
vector av whose i-th entry is av;. Similarly, the product of a scalar o and
a matrix A is the matrix aA whose i, j-th entry is aq;;.

Dot product The dot product of two vectors v and w is the scalar

n
V-W= Z L;W;.
i=1
The dot product is also called the inner product.

Matrix multiplication The product of two matrices A and B is the
matrix C = AB whose i, j-th entry is

n
cij = D, by
k=1

The number of columns of A must be equal to the number of rows of B,
and the resulting matrix C has the same number of rows as A and the
same number of columns as B. Unless otherwise stated, we consider
the vector v with length n as a column matrix, i.e. a matrix with one
column and n rows.

Transpose The transpose of a matrix A is the matrix AT whose i, j-
th entry is the j,i-th entry of A. If A is a square matrix, then AT is the
matrix obtained by reflecting A along its main diagonal.

Determinant The determinant of a square matrix A is a scalar that is
a measure of the (signed) volume of the parallelepiped spanned by the
columns of A. It is denoted by det(A) or |A]|.

The determinant is nonzero if and only if the matrix is invertible
and the linear map represented by the matrix is an isomorphism - i.e.

2.3. LINEAR ALGEBRA 33

it preserves the dimension of the vector space. The determinant of a
product of matrices is the product of their determinants.

Particularly, the determinant of a 2 X 2 matrix ((cl Z) is

a b

c d = ad — bc.

Inverse matrix An n X n matrix A has an inverse n X n matrix A~! if
AATl =AT1A =1,

where I,, is the n X n identity matrix, i.e. a matrix whose diagonal entries
are 1 and all other entries are 0. If such a matrix exists, A is said invert-
ible. A square matrix that is not invertible is called singular. A square
matrix with entries in a field is singular if and only if its determinant is
Zero.

To calculate the inverse of a matrix, we can use the formula

-1

1 .
= A adj(A),

where adj(A) is the adjugate (or adjoint) of A4, i.e. the transpose of the
cofactor matrix of A.

The cofactor of the i, j-th entry of a matrix A is the determinant of
the matrix obtained by removing the i-th row and the j-th column of A,
multiplied by (—1)*/.

In the case of a 2 X 2 matrix, the inverse is

a B\ 1 (d -b
c d/ T ad—bc\-c al’

2.3.2 Systems of linear equations

A system of linear equations is a collection of linear equations that share
their unknowns. It is usually written in matrix form as Ax = b, where
A is a matrix of constants, x is a vector of unknowns, and b is a vector
of constants.

The system has a unique solution if and only if the matrix A is in-
vertible. The solution is x = A™'b.

34 CHAPTER 2. PRELIMINARIES

2.3.3 Eigenvalues and eigenvectors

An eigenvalue of an n X n square matrix A is a scalar 4 such that there
exists a non-zero vector v satisfying

Av = 1v. 2.1)

The vector v is called an eigenvector of A corresponding to A.

The eigenvalues of a matrix are the roots of its characteristic polyno-
mial, i.e. the roots of the polynomial det(A — AI,,) = 0, where I, is the
n X n identity matrix.

2.4 Probability

Probability is the branch of mathematics that studies the likelihood of
events. It is used to model uncertainty and randomness. The basic ob-
jects of probability are events and random variables.

For a comprehensive material about probability theory, the reader is
referred to Ross (2018)” and Ross (2014)3.

2.4.1 Axioms of probability and main concepts

The Kolmogorov axioms of probability are the foundation of probability
theory. They are

1. The probability of an event A is a non-negative real number, i.e.
P(A) > 0;

2. The probability of the sample space Q° is one, i.e. P(Q) = 1; and

3. The probability of the union of disjoint events, A N B = @, is the
sum of the probabilities of the events, i.e. P(AU B) = P(A) + P(B).

Sum rule A particular consequence of the third axiom is the addition
law of probability. If A and B are not disjoint, then

P(A U B) = P(A) + P(B) — P(A N B).

7S. M. Ross (2018). A First Course in Probability. 10th ed. Pearson, p. 528. ISBN: 978-
1292269207.

8S. M. Ross (2014). Introduction to Probability Models. 11th ed. Academic Press,
p. 784. ISBN: 9780124079489.

9The set of all possible events.

2.4. PROBABILITY 35

Joint probability The joint probability of two events A and B is the
probability that both events occur. It is denoted by P(A, B) = P(A N B).

Law of total probability The law of total probability states that if
By, ..., B, are disjoint events such that UL, B; = Q, then for any event
A, we have that

P(A) =) P(A,B)).
i=1

Conditional probability The conditional probability of an event A
given an event B is the probability that A occurs given that B occurs. It
is denoted by P(A | B).

Independence Two events A and B are independent if the probability
of A given B is the same as the probability of A, i.e. P(A | B) = P(4). It
is equivalent to P(4, B) = P(A) - P(B).

Bayes’ rule Bayes’ rule is a formula that relates the conditional prob-
ability of an event A given an event B to the conditional probability of B
given A. Itis

P(B|A)-P(A)

P(A | B) = 5

(2.2)
Bayes’ rule is one of the most important formulas in probability theory
and is used in many areas of science and engineering. Particularly, for
data science, it is used in Bayesian statistics and machine learning.

2.4.2 Random variables

A random variable is a function that maps the sample space Q to the
real numbers. It is denoted by a capital letter, e.g. X.

Formally, let X : Q — E be a random variable. The probability that
X takeson avalueinasetA C E is

P(X € A) =P({w € Q : X(w) € A)). (2.3)

If E = R, then X is a continuous random variable. If E = Z, then X
is a discrete random variable. The random variable X is said to follow
a certain probability distribution P — denoted by X ~ P — given by its
probability mass function or probability density function — see below.

36 CHAPTER 2. PRELIMINARIES

Probability mass function The probability mass function (PMF) of
a discrete random variable X is the function px : Z — [0, 1] defined by

px(x) = P(X = x). 2.4)

Probability density function The probability density function (PDF)
of a continuous random variable X is the function fx : R — [0, o) de-
fined by

b
Pl@a<X<bh)= f Sfx(x)dx. (2.5)

Cumulative distribution function The cumulative distribution func-
tion (CDF) of a random variable X is the function Fx : R — [0,1] de-
fined by

Fx(x) = P(X < x). (2.6)

2.4.3 Expectation and moments
Expectation is a measure of the average value of a random variable. Mo-

ments are measures of the shape of a probability distribution.

Expectation The expectation of a random variable X is the average
value of X. It is denoted by E[X]. By definition, it is

E[X] =) x px(x),

if X is discrete, or
E[X] = f x+ f(odx,

if X is continuous.

The main properties of expectation are listed below.

The expectation operator is linear. Given two random variables X
and Y and a real number ¢, we have

E[cX] = cE[X],

E[X +c] = E[X] +c,

and
E[X + Y] = E[X] + E[Y].

2.4. PROBABILITY 37

Under a more general setting, given a function g : R — R, the
expectation of g(X) is

E[g(X)] = D, 8(x) - px(x),
if X is discrete, or

E[g(0)] = f 8() - fy()dx,
if X is continuous.

Variance The variance of a random variable X is a measure of how
spread out the values of X are. It is denoted by V(X). By definition, it is

V(X) = E[(X - E[X])*]. (2.7)

Note that, as a consequence, the expectation of X 2 __ called second
moment — is
E[X?] = V(X) + E[X]?,

since
V(X) = E[(X — E[X])’]
= E[X? — 2X E[X] + E[X]?]
= E[X?] — 2 E[X] E[X] + E[X]?
= E[X?] — E[X]*.
Higher moments are defined similarly. The k-th moment of X is

E[X¥] =) xF - px(x),
X
if X is discrete, or

(o]
E[X*] =f xk~fX(x)dx,
—o0
if X is continuous.

Sample mean The sample mean is the average of a sample of ran-
dom variables. Given a sample X, ..., X, such that X; ~ X for all i, the
sample mean is

X =

S|

n
DX
i=1

38 CHAPTER 2. PRELIMINARIES

Law of large numbers The law of large numbers states that the aver-
age of a large number of independent and identically distributed (i.i.d.)
random variables converges to the expectation of the random variable.
Mathematically,

n—oo

n
lim = ' X; = E[X],
n i=1
given X; ~ X for all i.

Sample variance The sample variance is a measure of how spread
out the values of a sample are. Given a sample Xj, ..., X, such that X; ~
X for all i, the sample variance is

n

1 -
s= L S -2
n—1 i=1

Note that the denominator is n — 1 instead of n to correct the bias of the
sample variance.

Sample standard deviation The sample standard deviation is the
square root of the sample variance, i.e. S =V S2.

Sample skewness The skewness is a measure of the asymmetry of
a probability distribution. The sample skewness is based on the third
moment of the sample. Given a sample Xj, ..., X, such that X; ~ X for
all i, the sample skewness is

1 n S
Sk _ ; Zizl(Xi _X)3
ewness = T

Skewness is zero for a symmetric distribution, positive for a right-skewed
distribution, and negative for a left-skewed distribution.

Sample kurtosis The kurtosis is a measure of the tailedness of a prob-
ability distribution. The sample kurtosis is based on the fourth moment
of the sample. Given a sample Xj, ..., X,, such that X; ~ X for all i, the
sample kurtosis is

1 @n -

- Zizl(Xi - X)4

Kurtosis= 2—— 3

S4
Kurtosis is positive if the tails are heavier than a normal distribution,
and negative if the tails are lighter.

2.4. PROBABILITY 39

2.4.4 Common probability distributions

Several phenomena in nature and society can be modeled as random
variables. Some distributions are frequently used to model these phe-
nomena. The main ones are listed below.

Bernoulli distribution The Bernoulli distribution is a discrete distri-
bution with two possible outcomes, usually called success and failure. It
is parametrized by a single parameter p € [0, 1], which is the probability
of success. It is denoted by Bern(p).

The expected value of X ~ Bern(p) is E[X] = p, and the variance is
V(X) = p(1 - p).

Poisson distribution The Poisson distribution is a discrete distribu-

tion that models the number of events occurring in a fixed interval of

time or space. It is parametrized by a single parameter 4 > 0, which is

the average number of events in the interval. It is denoted by Poisson(4).
The probability mass function of X ~ Poisson(4) is

—A7x
px() = S 29)

The expected value of X ~ Poisson(4) is E[X] = A, and the variance
isV(X) = 1.

Normal distribution The normal distribution is a continuous distri-
bution with a bell-shaped density. It is parametrized by two parameters,
the mean u € R and the standard deviation o > 0. It is denoted by
N(u,c?).

The special case where u = 0 and o = 1iscalled the standard normal
distribution. It is denoted by N(0, 1).

The probability density function of X ~ N(u, o?) is

exp (—M) . (2.9)

202

fx(o) =

1
\2mo?

The expected value of X ~ N'(u, 0?) is E[X] = u, and the variance is
V(X) = o2

40 CHAPTER 2. PRELIMINARIES

Central limit theorem The central limit theorem states that the nor-
malized version of the sample mean converges to a standard normal dis-
tribution!®. Given Xj, ..., X,, i.i.d. random variables with mean u and
finite variance o? < oo,

V(X —) ~ N(0,0%),

as n — oo. In other words, for a large enough n, the distribution of the
sample mean gets closer!! to a normal distribution with mean u and
variance o?/n.

The central limit theorem is one of the most important results in
probability theory and statistics. Its implications are fundamental in
many areas of science and engineering.

T distribution The T distribution is a continuous distribution with
a bell-shaped density. It is parametrized by a single parameter v > 0,
called the degrees of freedom. It is denoted by T (v).
The T distribution generalizes to the three parameter location-scale
t distribution J(u, 0'2,7/), where u is the location parameter and o is
the scale parameter. Thus, given X ~ J(v), we have that u + oX ~
T(u,a?,v).
Note that
lim 7 (v) = N(0,1).
V=00

Thus, the T distribution converges to the standard normal distribution
as the degrees of freedom go to infinity.

Gamma distribution The Gamma distribution is a continuous dis-
tribution with a right-skewed density. It is parametrized by two param-
eters, the shape parameter « > 0 and the rate parameter § > 0. It is
denoted by Gamma(a, 8).

The probability density function of X ~ Gamma(a,) is

ﬁozxoz—le—ﬁx

fx(x) = W,

(2.10)

10This statement of the central limit theorem is known as the Lindeberg-Levy CLT.
There are other versions of the central limit theorem, some more general and some more
restrictive.

1 Formally, this is called convergence in distribution, refer to P. Billingsley (1995).
Probability and Measure. 3rd ed. John Wiley & Sons. ISBN: 0-471-00710-2 for more de-
tails.

2.4. PROBABILITY 41

where I'(@) is the gamma function, defined by

Ia) = f t*le~tdt. (2.11)
0

In Bayesian analysis, the gamma distribution is commonly used as
a conjugate prior. A conjugate prior is a prior distribution that, when
combined with the likelihood, results in a posterior distribution that is
of the same family as the prior.

2.4.5 Permutations and combinations

For the sake of the reference, we present some definitions and formulas
from combinatorics. Combinatorics is the branch of mathematics that
studies the counting of objects.

Factorial The factorial of a non-negative integer n is the product of
all positive integers up to n. It is denoted by n!. By definition, 0! = 1.

Permutation A permutation is an arrangement of a set of elements.
The number of permutations of n elements is n!. Permutations are used
in combinatorics to count the number of ways to arrange a set of ele-
ments.

Combination A combination is a selection of a subset of elements
from a set. The number of combinations of k elements from a set of n

elements is
n\ _ n!
k]~ ki(n—k)\

Combinations are used in combinatorics to count the number of ways
to select a subset of elements from a set. The binomial coefficient (Z) is

also called a choose function.

Fundamental data concepts

The simple believes everything,
but the prudent gives thought to his steps.
— Proverbs 14:15 (ESV)

A useful start point for someone studying data science is a definition of
the term itself. In this chapter, I discuss some definitions in literature
and provide a definition of my own. As discussed in chapter 1, there is
no consensus on the definition of data science. However, they all agree
that data science is cross-disciplinary and a very important field of study.

Another important discussion is the evidence that data science is
actually a new science. I argue that a “new science” is not a subject that
its basis is built from the ground up!, but a subject that has a particular
object of study and that meets some criteria.

Once we establish that data science is a new science, we need to
understand one core concept: data. In this book, I focus on structured
data, which are data that are organized in a tabular format. I discuss
the importance of understanding the nature of the data we are working
with and how we represent them.

Finally, I discuss two important concepts in data science: database
normalization and tidy data. Database normalization is mainly focused
on the data storage. Tidy data is mainly focused on the requirements of
data for analysis. Both concepts interact with each other and have their
mathematical foundations. I bridge the gap between the two concepts
by discussing their common mathematical foundations.

L As it would as improductive as creating a “new math” for each new application. All
“sciences” rely on each other in some way

43

44 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS
Chapter remarks

Contents

3.1 Datascience definition 45

3.2 The data science continuum 46

3.3 Fundamentaldatatheory 46

331 Phenomena 46

332 Measurementso . 48

3.3.3 Knowledge extraction 49

34 Structureddata, 50

3.4.1 Database normalization. 51

342 Tidydata 55

3.4.3 Bridging normalization, tidyness, and data theory 63

3.44 Data semantics and interpretation 66

3.5 Unstructureddata 67

Context

Objectives

Takeways

3.1. DATA SCIENCE DEFINITION 45

3.1 Data science definition

For Zumel and Mount (2019), “data science is a cross-disciplinary prac-
tice that draws on methods from data engineering, descriptive statistics,
data mining, machine learning, and predictive analytics.” They com-
pare the area with the operations research, stating that data science fo-
cuses on implementing data-driven decisions and managing their con-
sequences.

Wickham, Cetinkaya-Rundel, and Grolemund (2023) state that “data
science is an exciting discipline that allows you to transform raw data into
understanding, insight, and knowledge.”

I find the first definition too restrictive once new methods and tech-
niques are always under development. We never know when new “data-
related” methods will become obsolete or a trend. Also, Zumel and
Mount’s view gives the impression that data science is a operations re-
search subfield. Although I do not try to prove otherwise, I think it is
much more useful to see it as an independent field of study. Obviously,
there are many intersections between both areas (and many other areas
as well). Because of such intersections, I try my best to keep definitions
and terms standardized throughout chapters, sometimes avoiding pop-
ular terms that may generate ambiguities or confusion.

The second one is not really a definition. However, it states clearly
what data science enables us to do. From these thoughts, let’s define the
term.

Definition 3.1

Data science is the study of computational methods to extract
knowledge from measurable phenomena.

I want to highlight the meaning of some terms in this definition.
Computational methods means that data science methods use comput-
ers to handle data and perform the calculations. Knowledge means in-
formation that humans can easily understand or apply to solve prob-
lems. Measurable phenomena are events or processes where raw data
can be quantified in some way?. Raw data are data collected directly
from some source and that have not been subject to any other transfor-
mation by a software program or a human expert. Data is any piece of
information that can be digitally stored.

2TODO: talk about non-measurable phenomena

46 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Kelleher and Tierney (2018) summarize very well the challenges
data science takes up: “extracting non-obvious and useful patterns from
large data sets [...]; capturing, cleaning, and transforming [...] data;
[storing and processing] big [...] data sets; and questions related to data
ethics and regulation.”

Data science contrasts with conventional sciences. Usually, a “sci-
ence” is named after its object of study. Biology is the study of the life,
Earth science studies the planet Earth, and so on. I argue that data sci-
ence does not study data itself, but how we can use them to understand
a phenomenon.

Besides, the conventional scientific paradigm is essentially model-
driven: we observe a phenomenon related to the object of study, we rea-
son the possible explanation (the model or hypothesis), and we validate
our hypothesis (most of the time using data, though). In data science,
however, we extract the knowledge directly and primarily from the data.
The expert knowledge and reasoning may be taken into account, but we
give data the opportunity to surprise us.

Thus, the objects of the study in data science are the computational
methods and processes that can extract reliable and ethical knowledge
from huge amounts of data.

3.2 The data science continuum

From which point a subject becomes a new science?

3.3 Fundamental data theory

As expected, data science is not a isolated science. It incorporates sev-
eral concepts from other fields and sciences. In this section, I explain
the basis of each component of the provided definition.

3.3.1 Phenomena

Phenomenon is a term used to describe any observable event or process.
They are the source we use to understand the world around us. In gen-
eral, we use our senses to perceive phenomena. To make sense of them,
we use our knowledge and reasoning.

Philosophy is the study of knowledge and reasoning. It is a very
broad field of study that has been divided into many subfields. One of
them is epistemology, which is the study of knowledge. Epistemology is

3.3. FUNDAMENTAL DATA THEORY 47

Figure 3.1: My view of data science.

in expertise

«
CS [.

computer science

Data science is an entire new science. Being a new science does
not mean that its basis is built from the ground up. Most of the
subjects in data science come from other sciences, but its object
of study (computational methods to extract knowledge from mea-
surable phenomena) is particular enough to unfold new scientific
questions - such as data ethics, data collection, etc.

the field of philosophy that studies how we can acquire knowledge and
how we can distinguish between knowledge and opinion. In particu-
lar, epistemology studies the nature of knowledge, justification, and the
rationality of belief.

Another important subfield in philosophy is ontology, which is the
study of being. It studies the nature of being, existence, or reality. On-
tology is the field of philosophy that studies what exists and how we
can classify it. In particular, ontology studies the nature of categories,
properties, and relations.

Finally, logic is the study of reasoning. It studies the nature of rea-
soning and argumentation. In particular, logic studies the nature of in-
ference, validity, and fallacies.

In the context of data science, we usually focus on phenomena from
particular domain of expertise. For example, we may be interested in

48 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

the phenomena related to the stock market, the phenomena related to
the weather, or the phenomena related to the human health. Thus, we
need to understand the nature of the phenomena we are studying.

Thus, fully understading the phenomena we are tackling requires
both a general knowledge of epistemology, ontology, and logic, and a
particular knowledge of the domain of expertise.

Observe as well that we do not restrict ourselves to the “qualitative”
understanding of philosophy. There are several computational meth-
ods that implements the concepts of epistemology, ontology, and logic.
For example, we can use a computer to perform deductive reasoning, to
classify objects, or to validate an argument. Also, we have strong math-
ematical foundations and computational tools to organize categories,
relations, and properties.

The reason we need to understand the nature of the phenomena we
are studying is that we need to guarantee that the data we are collecting
are relevant to the problem we are trying to solve. Incorrectly perception
of the phenomena may lead to incorrect data collection, which may lead
to incorrect conclusions.

3.3.2 Measurements

In data science, we are interested in measurable phenomena. Measur-
able phenomena are those that we can quantify in some way. For exam-
ple, the temperature of a room is a measurable phenomenon because we
can measure it using a thermometer. The number of people in a room
is also a measurable phenomenon because we can count them.

When we quantify a phenomenon, we perform data collection. Data
collection is the process of gathering data on targeted phenomenon in
an established systematic way. Systematic means that we have a plan to
collect the data and we understand the consequences of the plan, includ-
ing the sampling bias. Sampling bias is the influence that the method
of collecting the data has on the conclusions we can draw from them.
Once we have collected the data, we need to store them. Data storage is
the process of storing data in a computer.

To perform those tasks, we need to understand the nature of data.
Data are any piece of information that can be digitally stored. Data can
be stored in many different formats. For example, we can store data in
a spreadsheet, in a database, or in a text file. We can also store data
in many different types. For example, we can store data as numbers,
strings, or dates.

3.3. FUNDAMENTAL DATA THEORY 49

In data science, studying data types is important because they need
to correctly reflect the nature of the source phenomenon and be com-
patible with the computational methods we are using. Data types also
restrict the operations we can perform on the data.

The foundation and tools to understand data types come from com-
puter science. Among the subfields, I highlight:

+ Algorithms and data structures: the study of data types and the
computational methods to manipulate them.

« Databases: the study of storing and retrieving data.

3.3.3 Knowledge extraction

Once we have collected and stored the data, we need to extract knowl-
edge from them. In data science, we use computational methods to ex-
tract knowledge from data. These computational methods may come
from many different fields. In particular, I highlight:

« Statistics: the study of data collection, organization, analysis, in-
terpretation, and presentation.

+ Machine learning: the study of computational methods that can
automatically learn from data.

« Artificial intelligence: the study of computational methods that
can mimic human intelligence.

Also, many other fields contribute to the development of domain-
specific computational methods to extract knowledge from data. For
example, in the field of biology, we have bioinformatics, which is the
study of computational methods to analyze biological data. Earth sci-
ences have geoinformatics, which is the study of computational meth-
ods to analyze geographical data. And so on.

Each method has its own assumptions and limitations. Thus, we
need to understand the nature of the methods we are using. In par-
ticular, we need to understand the expected input and output of them.
Whenever the available data do not match the requirements of the method,
we may perform data handling?.

31t is important to highlight that it is expected that some of the methods assumptions
are not fully met. These methods are usually robust enough to extract valuable knowl-
edge even when data contain imperfections, errors and noise. However, it is still useful
to perform data handling to adjust data as much as possible.

50 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Data handling mainly includes data cleaning, data transformation,
and data integration. Data cleaning is the process of detecting and cor-
recting (or removing) corrupt or inaccurate pieces of data. Data trans-
formation is the process of converting data from one format or type to
another. Data integration is the process of combining data from differ-
ent sources into a single, unified view.

3.4 Structured data

As one expects, when we measure a phenomenon, the resulting data
come in many different formats. For example, we can measure the tem-
perature of a room using a thermometer. The resulting data is a num-
ber. We can assess English proficiency using an essay test. The resulting
data is a text. We can register relationships between proteins and their
functions. The resulting data is a graph.

Thus, it is important to understand the nature of the data we are
working with.

The most common data format is the structured data. Structured
data are data that are organized in a tabular format. Each row in the
table represents a single observation and each column represents a vari-
able that describes the observation.

We restrict the kind of information we store in each cell, i.e. the data
type of each measurement. Each column has a data type. The data type
restrict the operations we can perform on the data. For example, we can
perform arithmetic operations on numbers, but not on text.

The most common classification of data types is Stevens’s types: nom-
inal, ordinal, interval, and ratio. Nominal data are data that can be clas-
sified into categories. Ordinal data are data that can be classified into
categories and ordered. Interval data are data that can be classified into
categories, ordered, and measured in fixed units. Ratio data are data
that can be classified into categories, ordered, measured in fixed units,
and have a true zero. In practice, they differ on the logical and arith-
metic operations we can perform on them.

However, Stevens’s types do not exhaust all possibilities for data types.
For example, probabilities are bounded at both ends, and thus do not
tolerate arbitrary scale shifts. Velleman and Wilkinson (1993) provide
interesting insights about data types. Although I do not agree with all
his points, I think it is a good reading. In particular, I agree with his
criticism of statements that data types are evident from the data inde-

3.4. STRUCTURED DATA 51

Table 3.1: Stevens’s types.

Data type Operations

Nominal =

Ordinal =<

Interval =<,+,—
Ratio =<,+,— X, +

pendent of the questions asked. The same data can be interpreted in
different ways depending on the context and the goals of the analysis.

However, I do not agree with the idea that good data analysis does
not assume data types. I think that data scientists should be aware of
the data types they are working with and how they affect the analysis.
With no bias, there is no learning. There is no such a thing as a “bias-
free” analysis, the amount of possible combinations of assumptions eas-
ily grows out of control. The data scientist must take responsibility for
the consequences of their assumptions. Good assumptions and hypoth-
esis are a key part of the data science methodology.

When we work with structured data, two concepts are very impor-
tant: database normalization and tidy data. Database normalization is
mainly focused on the data storage. Tidy data is mainly focused on the
requirements of data for analysis. Both concepts have their mathemat-
ical foundations and tools for data handling.

3.4.1 Database normalization

Database normalization is the process of organizing the columns and ta-
bles of a relational database to minimize data redundancy and improve
data integrity.

Normal form is a state of a database that is free of certain types of
data redundancy. Before studying normal forms, we need to understand
basic concepts in the database theory and the basic operations in rela-
tional algebra.

Relational database theory

Projection The projection of a relation is the operation that returns a
relation with only the columns specified in the projection. For example,

52 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

if we have a relation X[A, B, C] and we perform the projection 74 ¢(X),
we get a relation with only the columns A and C, i.e. X[A, C].

Join The (natural) join of two relations is the operation that returns
a relation with the columns of both relations. For example, if we have
two relations S[U U V] and T[U u W], where U is the common set of
attributes, join S X T of S and T is the relation with tuples (u, v, w) such
that (u,v) € S and (u,w) € T. The generalized join is built up out of
binary joins: X {R;,R;,...,R,} = Ry X R, X --- X R,,. Since the join
operation is associative and commutative, we can parenthesize however
we want.

Functional dependency A functional dependency is a constraint be-
tween two sets of attributes in a relation. It is a statement that if two
tuples agree on certain attributes, then they must agree on another at-
tribute. Specifically, the functional dependency U — V holds in R if and
only if for every pair of tuples ¢, and ¢, in R such that t,[U] = ,[U], it
is also true that t;[V] = t,[V].

Multi-valued dependency A multi-valued dependency is a constraint
between two sets of attributes in a relation. It is a statement that if two
tuples agree on certain attributes, then they must agree on another set
of attributes. Specifically, the multi-valued dependency U - V holds
in R if and only if R = R[UV] I} R[UW], where W are the remaining
attributes.

Join dependency A join dependency is a constraint between subsets
of attributes (not necessarily disjoint) in a relation. R obeys the join
dependency *{X;, X5, ..., X,,} if R = {R[X;], R[X5], ... , R[X,,]}-

Normal forms

First normal form (INF) A relation is in 1NF if and only if all at-
tributes are atomic. An attribute is atomic if it is not a set of attributes.
For example, the relation R[A, B, C] is in 1NF if and only if A, B, and C
are atomic.

Second normal form (2NF) A relation is in 2NF if and only if it is in
INF and every non-prime attribute is fully functionally dependent on
the primary key. A non-prime attribute is an attribute that is not part

3.4. STRUCTURED DATA 53

of the primary key. A primary key is a set of attributes that uniquely
identifies a tuple. A non-prime attribute is fully functionally dependent
on the primary key if it is functionally dependent on the primary key and
not on any subset of the primary key. For example, the relation RfJUU V|
isin 2NF if and only if U — X, VX € V and there isno W C U such
that W —> X, VX e V.

Third normal form (3NF) A relation is in 3NF if and only if it is
in 2NF and every non-prime attribute is non-transitively dependent on
the primary key. A non-prime attribute is non-transitively dependent
on the primary key if it is not functionally dependent on another non-
prime attribute. For example, the relation R[UU V] is in 3NF if and only
if U is the primary key and thereisno X € VsuchthatX — Y, VY € V.

Boyce-Codd normal form (BCNF) A relation R with attributes X is
in BCNF if and only if it is in 2NF and for each nontrivial functional
dependency U — V in R, the functional dependency U — X isin R. In
other words, a relation is in BCNF if and only if every functional depen-
dency is the result of keys.

Fourth normal form (4NF) A relation R with attributes X is in 4NF
if and only if it is in 2NF and for each nontrivial multi-valued depen-
dency U - V in R, the functional dependency U — X is in R. In other
words, a relation is in 4NF if and only if every multi-valued dependency
is the result of keys.

Projection join normal form (PJNF) A relation R with attributes
X is in PINF* if and only if it is in 2NF and the set of key dependencies®
of R impllies each join dependency of R. The PINF guarantees that the
table cannot be decomposed without losing information (except by de-
compositions based on keys).
Note that the ideia behind the definition of BCNF and 4NF are slightly

different from the PJINF. In fact, if we consider that for each key depen-
dency implies a join dependency, the relation is in the so-called over-

4Also known as fifth normal form (5NF).
SKey dependency is a functional dependency in the form K — X.

54 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

strong projection-join normal form®. Such a level of normalization does
not improve data storage or eliminate inconsistencies. In practice, it
means that if a relation is in PINF, careless joins — i.e. those that vio-
late a join dependency — produce inconsistent results.

Examplel Considerthe 2NFrelation R[A, B, C, D] with the functional
dependencies A - B, B - C, C — D. The relation is not in 3NF be-
cause C is transitively dependent on A. To normalize it, we can decom-
pose it into the relations R;[A, B, C] and R,[C, D]. Now, R, is in 3NF
and R, is in 2NF, but not in 3NF. We can decompose R; into the rela-
tions R3[A, B] and R4[B, C]. The original relation can be reconstructed
by X {R,, R3, Ry}

Example2 Consider the 2NF relation R[ABC]’ such that the primary
key is the composite of A, B, and C. The relation is thus in the 4NF, as
no column is a determinant of another column. Suppose, however, the
following constraint: if (a, b,c’), (a,b’,c), and (a’, b, c) are in R, then
(a,b,c)is alsoin R. This can be illustrated if we consider A as a agent, B
as a product, and C as a company. If an agent a represents companies c
and ¢, and product b is in his portfolio, then assuming both companies
make b, a must offer b from both companies.

The relation is not in PINF, as the join dependency * {AB, AC, BC}
is not implied by the primary key. (In fact, the only functional depen-
dency is the trivial ABC — ABC.) In this case, to avoid redundancies
and inconsistencies, we must split the relation into the relations R;[AB],
R,[AC], and R;[BC].

It is iteresting to notice that in this case, the relation R; X R, might
contain tuples that do not make sense in the context of the original re-
lation. For example, if R; contains (a, b) and R, contains (a, ¢’), the join
contains (a, b, ¢"), which might not be a valid tuple in the original rela-
tion if (b, ¢') is not in R5. This is very important to notice, as it is a com-
mon mistake to assume that the join of the decomposed relations always
contains valid tuples.

Example 3 Consider the 2NF relation R[A, B, C, D, E] with the func-
tional dependencies A — D, AB — C, and B — E. To make it PJNF, we

6R. Fagin (1979). “Normal forms and relational database operators”. In: Proceedings
of the 1979 ACM SIGMOD International Conference on Management of Data. SIGMOD
’79. Boston, Massachusetts: Association for Computing Machinery, pp. 153-160. ISBN:
089791001X. DOL: 10.1145/582095.582120. URL: https://doi.org/10.1145/582095.582120.
"Here we abreviate A, B, C as ABC.

https://doi.org/10.1145/582095.582120
https://doi.org/10.1145/582095.582120

3.4. STRUCTURED DATA 55

can decompose it into the relations R;[A, D], R,[A, B, C], and R;[B, E].
The original relation can be reconstructed by X {R;, R,, R;}. However,
unlike the previous example, the join of the decomposed relations al-
ways contains valid tuples — excluding degenerate joins, where there
are no common attributes. The reason is that all join dependencies im-
plied by the key dependencies are trivial when reduced?®.

3.4.2 Tidydata

It is estimated that 80% of the time spent on data analysis is spent on
data preparation. Usually, the same process is repeated many times in
different datasets. The ideia is that organized data carries the meaning
of the data, reducing the time spent on handling the data to get it into
the right format for analysis.

Tidy data is a data format that provides a standardized way to orga-
nize data values within a dataset. The main advantage of tidy data is
that it provides clear semantics with focus on only one view of the data.

Many data formats might be ideal for particular tasks, such as raw
data, dense tensors, or normalized databases. However, most of the
statitiscal and machine learning methods require a particular data for-
mat. Tidy data is a data format that is appropriate to those tasks.

Wickham’s thoughts on tidy data
Like families, tidy datasets are all alike but every messy dataset is

messy in its own way.

In an unrestricted table, the meaning of rows and columns are not
fixed. In a tidy table, the meaning of rows and columns are fixed.
It is based on the idea that a dataset is a collection of values, where:

« Each value belongs to a variable and an observation.

« Each variable, represented by a column, contains all values that
measure the same attribute across (observational) units.

8A proof in under development based on M. W. Vincent (1997). “A corrected SNF
definition for relational database design”. In: Theoretical Computer Science 185.2. Theo-
retical Computer Science in Australia and New Zealand, pp. 379-391. ISSN: 0304-3975.
DOIL: https://doi.org/10.1016/S0304-3975(97)00050-9. URL: https://www.sciencedirect.
com/science/article/pii/S0304397597000509.

https://doi.org/https://doi.org/10.1016/S0304-3975(97)00050-9
https://www.sciencedirect.com/science/article/pii/S0304397597000509
https://www.sciencedirect.com/science/article/pii/S0304397597000509

56 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS
« Each observation, represented by a row, contains all values mea-
sured on the same unit across attributes.

« Attributes are the characteristics of the units, e.g. height, temper-
ature, duration.

« Observational units are the individual entities being measured, e.g.
a person, a day, an experiment.

Table 3.2 summarizes the main concepts.

Table 3.2: Tidy data concepts.

Concept Structure Contains Across
Variable Column Same attribute Units
Observation Row Same unit Attributes

If we follow this structure, the meaning of data is implicit in the table
itself. However, it is not always trivial to organize data in a tidy format.
Usually, we have more than one level of observational units, each one
represented by a table. Moreover, there might exist more than one way
to define what are the observational units in a dataset.

To organize data in a tidy format, one can consider that:

« Attributes are functionally related among themselves — e.g. Z
is a linear combination of X and Y, or X and Y are correlated, or
P(X,Y) follows some joint distribution.

« Units can be grouped or compared — e.g. person A is taller than
person B, or the temperature in day 1 is higher than in day 2.

A particular point that tidy data do not address is that values in a
column might not be in the same scale or unit of measurement’®. For ex-
ample, a column might contain the temperature in an experiment, and
another column might contain the unit of measurement that was used
to measure the temperature. This is a common problem in databases,
and it must be addressed for machine learning and statistical methods
to work properly.

9 Attention: observational unit is not unit of measurement.

3.4. STRUCTURED DATA 57

Note that the order of the rows and columns is not important. How-
ever, it might be convenient to sort data in a particular way to facili-
tate the understanding. For instance, one usually expects that the first
columns are fixed variables'®, i.e. variables that are not the result of a
measurement, and the last columns are measured variables. Also, ar-
ranging rows by some variable might highlight some pattern in the data.

Usually, columns are named — the collection of all column names
is called the header, while rows are numerically indexed.

Common messy datasets

Wickham (2014) lists some common problems with messy datasets and
how to tidy them!!. The problems are summarized below.

Headers are values, not variable names For example, consider ta-
ble 3.3. This table is not tidy because the column headers are values, not
variable names. This format is frequently used in presentations since it
is more compact. It is also useful to perform matrix operations. How-
ever, it is not appropriate for general analysis.

Table 3.3: Messy table, from Pew Forum dataset, where headers
are values, not variable names.

Religion <$10k $10-20k $20-30k

Agnostic 27 34 60
Atheist 12 27 37
Buddhist 27 21 30

To make it tidy, we can transform it into the table 3.4 by explicitly
introducing variables Income and Frequency. Note that the table is now
longer, but it is also narrower. This is a common pattern when fixing
this kind of issue. The table is now tidy because the column headers are
variable names, not values.

Multiple variables are stored in one column For example, con-
sider the table 3.5. This table is not tidy because the column — interestly

10Closely related (and potentially the same as) key in database theory.
HQperations are presented in chapter 6.

58 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Table 3.4: Tidy version of table 3.3 where values are correctly
moved.

Religion Income Frequency

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Atheist <$10k 12
Atheist $10-20k 27
Atheist $20-30k 37

called column —, contains multiple variables. This format is frequent,
and sometimes the column name contains the names of the variables.
Sometimes it is very hard to separate the variables.

Table 3.5: Messy table, from TB dataset, where multiple variables
are stored in one column.

country year column cases

AD 2000 mO014 0
AD 2000 ml1524 0
AD 2000 m2534 1
AD 2000 m3544 0

To make it tidy, we can transform it into the table 3.6. Two columns
are created to contain the variables Sex and Age, and the old column
is removed. The table keeps the same number of rows, but it is now
wider. This is a common pattern when fixing this kind of issue. The
new version usually fixes the issue of correctly calculating ratios and
frequency.

Variables are stored in both rows and columns For example, con-
sider the table 3.7. This is the most complicated case of messy data.

3.4. STRUCTURED DATA 59

Table 3.6: Tidy version of table 3.5 where values are correctly
moved.

country year sex age cases
AD 2000 m 0-14 0
AD 2000 m 15-24 0
AD 2000 m 25-34 1
AD 2000 m 35-44 0

Usually, one of the columns contains the names of the variables, in this
case the column element.

Table 3.7: Messy table, adapted from airquality dataset, where
variables are stored in both rows and columns.

id year month element dl1 d2 .. d31
MX17004 2010 1 tmax 24 ... 27
MX17004 2010 1 tmin 14
MX17004 2010 2 tmax 27 24 ... 27
MX17004 2010 2 tmin 14 .. 13

To fix this issue, we must first decide which column contains the
names of the variables. Then, we must lengthen the table in function
of the variables (and potentially their names), as seen in table 3.8. Aft-
wards, we widen the table in function of their names. Finally, we re-
move implicit information, as seen in table 3.9.

Multiple types of observational units are stored in the same table
For example, consider the table 3.10. It is very common during data
collection that many observational units are registered in the same table.

To fix this issue, we must each observation unit must be moved to
a different table. Sometimes, it is useful to create unique identifiers for
each observation. The separation avoids several types of potential in-
consistencies. However, take into account that during data analysis, it

CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Table 3.8: Partial solution to tidy table 3.7. Note that the table is
now longer.

id date element value
MX17004 2010-01-01 tmax

MX17004 2010-01-01 tmin 14
MX17004 2010-01-02 tmax 24

MX17004 2010-01-02 tmin

Table 3.9: Tidy version of table 3.7 where values are correctly
moved.

id date tmin tmax
MX17004 2010-01-01 14
MX17004 2010-01-02 24

Table 3.10: Messy table, adapted from billboard dataset, where
multiple types of observational units are stored in the same table.

year artist track date rank
2000 2 Pac Baby Don’t Cry 2000-02-26 87
2000 2 Pac Baby Don’t Cry 2000-03-04 82
2000 2 Pac Baby Don’t Cry 2000-03-11 72
2000 2 Pac Baby Don’t Cry 2000-03-18 77

2000 2Ge+her The Hardest... 2000-09-02 91
2000 2Ge+her The Hardest... 2000-09-09 87
2000 2Ge+her The Hardest... 2000-09-16 92

3.4. STRUCTURED DATA 61

is possible that we have to denormalize them. The two resulting tables
are shown in table 3.11 and table 3.12.

Table 3.11: Tidy version of table 3.10 containing the observational
unit track.

track id artist track
1 2 Pac Baby Don’t Cry
2 2Ge+her The Hardest Part Of Breaking Up

Table 3.12: Tidy version of table 3.10 containing the observational
unit rank of the track in certain week.

trackid date rank
1 2000-02-26 87
1 2000-03-04 82
1 2000-03-11 72
1 2000-03-18 77
2 2000-09-02 91
2 2000-09-09 87
2 2000-09-16 92

A single observational unit is stored in multiple tables For ex-
ample, consider tables 3.13 and 3.14. It is very common during data
collection that a single observational unit is stored in multiple tables.
Usually, the table (or file) itself represents the value of a variable. When
columns are compatible, it is straightforward to combine the tables.

To fix this issue, we must first make the columns compatible. Then,

we can combine the tables adding a new column that identifies the ori-
gin of the data. The resulting table is shown in table 3.15.

62 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Table 3.13: Messy tables, adapted from nycflights13 dataset,
where a single observational unit is stored in multiple tables. As-
sume that the origin filename is called 2013. csv.

time

month day
1 1
1 1
1 1
1 1

517
533
542
544

Table 3.14: Messy tables, adapted from nycflights13 dataset,
where a single observational unit is stored in multiple tables. As-
sume that the origin filename is called 2014. csv.

time

month day
1 1
1 1
1 1
1 1

830
850
923
1004

Table 3.15: Tidy data where tables 3.13 and 3.14 are combined.

year month day time
2013 1 1 517
2013 1 1 533
2013 1 1 542
2013 1 1 544
2014 1 1 830
2014 1 1 850
2014 1 1 923
2014 1 1 1004

3.4. STRUCTURED DATA 63

3.4.3 Bridging normalization, tidyness, and data theory

First and foremost, both concepts, normalization and tidy data, are not
in conflict.

In data normalization, given a set of functional, multivalued and join
dependencies, there exists a normal form that is free of redundancy. In
tidy data, Wickham, Cetinkaya-Rundel, and Grolemund also state that
there is only one way to organize the given data.

Wickham (2014) states that tidy data is 3NF. However, he does not
provide a formal proof. Since tidy data focuses on data analysis and not
on data storage, I argue that there is more than one way to organize the
data in a tidy format. It actually depends on what you define as the
observational unit.

Consider the following example. We want to study the phenomenon
temperature in a certain city. We fix three sensors in different locations
to measure the temperature. We collect data three times a day. If we
consider as the observational unit the event of measuring the tempera-
ture, we can organize the data in a tidy format as shown in table 3.16.

Table 3.16: Tidy data where the observational unit is the event of
measuring the temperature.

date time sensor temperature
2023-01-01 00:00 1 20
2023-01-01 00:00 2 21
2023-01-01 00:00 3 22
2023-01-01 08:00 1 21
2023-01-01 08:00 2 22
2023-01-01 08:00 3 23

However, since the sensors are fixed, we can consider the observa-
tional unit as the temperature at some time. In this case, we can organize
the data in a tidy format as shown in table 3.17.

In both cases, one can argue that the data is also normalized. In the
first case, the primary key is the composite of the columns date, time,
and sensor. In the second case, the primary key is the composite of the
columns date and time.

64 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

Table 3.17: Tidy data where the observational unit is the temper-
ature at some time.

date time temp.1 temp.2 temp. 3
2023-01-01 00:00 20 21 22
2023-01-01 08:00 21 22 23

One can state that the first form is more appropriate, since it is flex-
ible to add more sensors. However, the second form is very natural for
machine learning and statistical methods. Given the definition of tidy
data, I believe both forms are correct.

Another very interesting conjecture is whether we can formalize the
eventual change of observational unit in terms of the order that joins and
grouping operations are performed.

Example Consider the following example: the relation R[A, B, C, D, E]
and the functional dependencies A — D, B — E,and AB — C. Therela-
tion can be normalized up to 3NF by following one of the decomposition
trees shown in fig. 3.2. Every decomposition tree must take into account
that the join of the projections are lossless and dependency preserving.

Figure 3.2: Decomposition trees for the relation RJABCDE] and
the functional dependencies A - D, B — E, and AB — C to
reach 3NF.

ABCDE ABCDE
ABCE ABCD
ABC ABC

Note that the decomposition that splits first RIABC] is not valid,
since the resulting relation R[AB] is not a consequences of a functional

3.4. STRUCTURED DATA 65

dependency, see fig. 3.3.

Figure 3.3: Invalid decomposition trees for the relation
R[ABCDE].

AVVA

AD ABE BE ABD

VAN

We consider the functional dependencies A - D, B — E, and
AB — C. Note that R[AB] is not a consequence of a functional
dependency.

In this kind of relation schema, we have a set of key attributes, here
X = AB, and a set of non-prime attributes, here N' = CDE. Note that
the case X N V' = @ is the simplest we can have.

Observe, however, that transitive dependencies'? and complex join
dependencies restrict even further the joins we are allowed to perform.
Further formalization and study is under progress.

Now, consider a very common case: in our dataset, keys are un-
known. Let A be a student id, B be the course id, D be the student age, E
be the course load, and C be the student grade at the course. If only CDE
is known, the table R[CDE] is already tidy — and the observational unit
is the enrollment — once there is no key to perform any kind of normal-
ization. This happens in many cases where privacy is a concern.

But we can also consider that the observational unit is the student.
In this case, we must perform joins traversing the leftmost decomposi-
tion tree in fig. 3.2 from bottom to top. After each join, a summariza-
tion operation is performed on the relation considering the student as

12 Actually, when an attribute is both key and non-prime, some joins may generate
invalid tables.

66 CHAPTER 3. FUNDAMENTAL DATA CONCEPTS

the observational unit, i.e. over attribute A. The first join results in re-
lation R[ABCE] and the summarization operation results in a new rela-
tion R[AFG] where F is the average grade and G is the total course load
taken by the student. They all calculated based on the rows that are
grouped in function of A. It is important to notice that, after the sum-
marization operation, all observations must contain a different value of
A. The second join results in relation RIADFG]| = R[AD] X R[AFG].
This relation has functional dependency A — DFG, and it is in 3NF
(which is also tidy).

Unfortunately, it is not trivial to calculate all possible decomposi-
tion trees for a given dataset. Further formalization and study is under
progress.

3.4.4 Datasemantics and interpretation

In the rest of the book, we focus on a statistical view of the data. Besides
the functional dependencies, we also consider the statistical dependen-
cies of data. For instance, attributes A and B might not be functionally
dependent, but they might exits unknown P(A, B) that we can estimate
from the data. Each observed value of a key can represent a instance
of a random variable, and the other attributes can represent measured
attributes or calculated properties.

For data analysis, it is very important to understand the relation-
ships between the observations. For example, we might want to know
if the observations are independent, if they are identically distributed,
or if there is a known selection bias. We might also want to know if the
observations are dependent on time, and if there are hidden variables
that affect the observations.

Following wrong assumptions can lead to wrong conclusions. For
example, if we assume that the observations are independent, but they
are not, we might underestimate the variance of the estimators.

Although we not focus on time series, we must consider the tem-
poral dependence of the observations. For example, we might want to
know how the observation x, is affected by x,_;, x,_,, and so on. We
might also want to know if Markov property holds, and if there is peri-
odicity and seasonality in the data.

For the sake of the scope of this book, we suggest that any predic-
tion on temporal data should be done in the state space, where it is
safer to assume that observations are independent and identically dis-
tributed. This is a common practice in reinforcement learning and deep

3.5. UNSTRUCTURED DATA 67

learning. Takens’ theorem!? allows you to reconstruct the state space
of a dynamical system using time-delay embedding. Given a single ob-
served time series, you can create a multidimensional representation
of the underlying dynamical system by embedding the time series in a
higher-dimensional space. This embedding can reveal the underlying
dynamics and structure of the system.

3.5 Unstructured data

Unstructured data are data that do not have a predefined data model or
are not organized in a predefined manner. For example, text, images,
and videos are unstructured data.

Every unstructured dataset can be converted into a structured dataset.
However, the conversion process is not always straightforward nor loss-
less. For example, we can convert a text into a structured dataset by
counting the number of occurrences of each word. However, we lose
the order of the words in the text.

The study of unstructured data is, for the moment, out of the scope
of this book.

13F. Takens (2006). “Detecting strange attractors in turbulence”. In: Dynamical Sys-
tems and Turbulence, Warwick 1980: proceedings of a symposium held at the University of
Warwick 1979/80. Springer, pp. 366-381.

Data science project

Figured I could throw myself a pity party or go back to school
and learn the computers.

— Don Carlton, Monsters University (2013)

First of all, a data science project is a software project. The difference
between a data science software and a traditional software is that some
components of the former is constructed from data. This means that
part of the solution cannot be designed from the knowledge of the do-
main expert, but must be learned from the data. (Alternatively, the cost
of designing the solution is too high, and it is more efficient to learn it
from the data.)

One good example of a data science project is a spam filter. The
spam filter is a software that classifies emails into two categories: spam
and non-spam. The software is trained using a set of emails that are
already classified as spam or non-spam. The software is then used to
classify new emails. The software is a data science software because the
classification algorithm is learned from the data, i.e. the filters are not
designed “by hand”.

69

70 CHAPTER 4. DATA SCIENCE PROJECT
Chapter remarks
Contents
41 CRISP-DM i 71
42 ZNapproach 72
421 RolesoftheZNapproach 73
4.2.2 Processes of the ZN approach 74
4.3 Agilemethodology 74
44 SCRUM framework 75
45 OQurapproach. 76
4.51 Therolesofourapproach. 77
4.5.2 The principles of our approach 77
4.5.3 Solution search framework 79
Context
Objectives

Takeways

4.1. CRISP-DM 71

41 CRISP-DM

CRISP-DM! is a methodology for data mining projects. It is an acronym
for Cross Industry Standard Process for Data Mining. It is a methodol-
ogy that was developed in the 1990s by IBM, and it is still widely used
today.

CRISP-DM is a cyclic process. The process is composed of six phases:

1. Business understanding: this is the phase where the project objec-
tives are defined. The objectives must be defined in a way that is
measurable. The phase also includes the definition of the project
plan.

2. Data understanding: this is the phase where the data is collected
and explored. The data is collected from the data sources, and it
is explored to understand its characteristics. The phase also in-
cludes the definition of the data quality requirements.

3. Data preparation: this is the phase where the data is prepared for
the modeling phase. The data is cleaned, transformed, and ag-
gregated. The phase also includes the definition of the modeling
requirements.

4. Modeling: this is the phase where the model is trained and val-
idated. The model is trained using the prepared data, and it is
validated using the validation data. The phase also includes the
definition of the evaluation requirements.

5. Evaluation: this is the phase where the model is evaluated. The
model is evaluated using the evaluation data. The phase also in-
cludes the definition of the deployment requirements.

6. Deployment: this is the phase where the model is deployed. The
model is deployed using the deployment requirements. The phase
also includes the definition of the monitoring requirements.

Figure 4.1 shows a diagram of the CRISP-DM process. Note that the
process is cyclic and completly focused on the data. The process do not
address the software development aspects of the project.

The CRISP-DM methodology is a good starting point for data science
projects. However, it does not mean that should be followed strictly. The

1Official guide available at https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/
ModelerCRISPDM.pdf.

https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/ModelerCRISPDM.pdf
https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/ModelerCRISPDM.pdf

72 CHAPTER 4. DATA SCIENCE PROJECT

Figure 4.1: Diagram of the CRISP-DM process.

Business un- Data un-
derstanding derstanding

Data
Deployment

preparation

Modeling

Each block represents a phase of the CRISP-DM process. Data is
the central element of the process. Arrows represent the transi-
tions between the phases.

process is cyclic and flexible, and adaptations are possible at any stage
of the process.

4.2 ZN approach

Zumel and Mount (2019) also propose a methodology for data science
projects — which we call the ZN approach. Besides describing each step
in a data science project, they further address the roles of each individ-
ual involved in the project. They state that data science projects are al-
ways collaborative, as they require domain expertise, data expertise, and
software expertise. The requirements are dynamic, and the project has
many exploratory phases. Usually, projects based on data are urgent,

4.2. ZN APPROACH 73

and they must be completed in a short time — not only due to the busi-
ness requirements, but also because the data changes over time. The
authors state that agile methodologies are suitable (and necessary) for
data science projects.

4.2.1 Roles of the ZN approach

In their approach, five roles are defined.

Project sponsor It is the main stakeholder of the project, the one that
needs the results of the project. He represents the business interests and
champions the project. The project is considered successful if the spon-
sor is satisfied. Note that, ideally, the sponsor can not be the data scien-
tist, but someone that is not involved in the development of the project.
However, he needs to be able to express quantitatively the business goals
and participate actively in the project.

Client The client is the domain expert. He represents the end users’
interests. In a small project, he is usually the sponsor. He translates the
daily activities of the business into the technical requirements of the
software.

Data scientist The data scientist is the one that sets and executes the
analytic strategy. He is the one that communicates with the sponsor and
the client, effectively connecting all the roles. In small projects, he can
also act as the developer of the software. However, in large projects, he is
usually the project manager. Although it is not required to be a domain
expert, the data scientist must be able to understand the domain of the
problem. He must be able to understand the business goals and the
client’s requirements. Most importantly, he must be able to define and
to solve the right tasks.

Data architect The data architect is the one that manages data and
data storage. He usually is involved in more than one project, so it is
not an active participant. He that receives instructions to adapt the data
storage and means to collect data.

Operations The operations role is the one that manages infrastruc-
ture and deploys final project results. He is responsible to define re-

74 CHAPTER 4. DATA SCIENCE PROJECT

quirements such as response time, programming language, and the in-
frastructure to run the software.

4.2.2 Processes of the ZN approach

Zumel and Mount’s model is similar to CRISP-DM, but emphasizes that
back-and-forth is possible at any stage of the process. Figure 4.2 shows
a diagram of the process. The phases are:

« Define the goal: what problem are we trying to solve?
« Collect and manage data: what information do we need?

« Build the model: find patterns in the data that may solve the prob-
lem.

« Evaluate the model: is the model good enough to solve the prob-
lem?

» Present results and document: establish that we can solve the
problem and how we did it. (This step is a differentiator from
CRISP-DM. In ZN approach, result presentation is essential; data
scientists must be able to communicate their results effectively to
the client/sponsor.)

« Deploy the model: make the model available to the end users.

4.3 Agile methodology

Agile is a methodology for software development. It is an alternative to
the waterfall methodology. The waterfall methodology is a sequential
design where each phase must be completed before the next phase can
begin.

The four values of agile manifesto are:

« Individuals and interactions over processes and tools;

« Working software over comprehensive documentation;

« Customer collaboration over contract negotiation;

« Responding to change over following a plan.

4.4. SCRUM FRAMEWORK 75

Figure 4.2: Diagram of the data science process proposed by
Zumel and Mount (2019).

Define
the goal

("
-

i
)

Collect and
manage data

!

/ Build the

model

the model

Present
results

Evaluate
the model

i
[

Each block represents a phase of the data science process. The
emphasis is on the cyclic nature of the process. Arrows represent
the transitions between the phases, that can be back-and-forth.

4.4 SCRUM framework

SCRUM is an agile framework for software development. It is a process
framework for managing complex projects. It is a lightweight, which
means that it provides just enough guidance to be effective.

Many consider that SCRUM is not adequate for data science projects.
The main reason is that SCRUM is designed for projects where the re-
quirements are known in advance. Also, that data science projects have
exploratory phases, which are not well supported by SCRUM.

I argue that this view is wrong. SCRUM is a framework, and it is
designed to be adapted to the needs of the project. SCRUM is not a rigid
process. In the following, I propose an extension to SCRUM that makes
it suitable for data science projects.

(Inreal-world, most developers do not have hacking-level skills. They
are not autonomous enough to work without a plan. This is especially
true for “data scientists,” who are often not even developers. SCRUM is
a good compromise between the need for autonomy and the need for a
detailed plan. Project methodology is needed to ensure that the project
is completed in time and within budget.)

76 CHAPTER 4. DATA SCIENCE PROJECT

4.5 Our approach

The previously mentioned methodologies lack the focus on the software
development aspects of the data science project. For instance, CRISP-
DM defines the stages only of the data mining process, i.e. it does not
explicitly address user interface or data collection. Zumel and Mount’s
approach addresses data collection and presentation of results, but del-
egates the software development to the operations role, barely mention-
ing it. SCRUM is a good framework for software development, but it is
not designed for data science projects. It lacks the exploratory phases of
data science projects.

Thus, we propose an extension to SCRUM that makes it suitable for
data science projects. The extension is based on the following observa-
tions:

« Data science projects have exploratory phases;
« Data itself is a component of the solution;

« The solution is usually modularized, parts of it are constructed
from data while the other parts are constructed like traditional
software;

« The solution is usually deployed as a service, that must be main-
tained and monitored.

Moreover, we add two other values besides the agile manifesto val-
ues. They are:

« Model confidence/understanding over model performance;
« Code version control over interactive environments.

The first value is based on the observation that the model perfor-
mance is not the most important aspect of the model. The most impor-
tant aspect is the being sure that the model behaves as expected (and
sometimes why it behaves as expected). It is not uncommon to find
models that seems to perform well during evaluation steps?, but that
are not suitable for production.

The second value is based on the observation that interactive envi-
ronments are not suitable for the development of the model search code,
for instance. Interactive environments auxiliate the exploratory phases,

20f course, when evaluation is not performed correctly.

4.5. OUR APPROACH 77

but the final version of the code must be version controlled. Often, we
hear stories that models cannot be reproduced because the code that
generated them are not runnable anymore. This is a serious problem,
and it is not acceptable for maintaining a software solution.

These observations and values are the basis of our approach. The
roles and principles of our approach are described in the following sec-
tions.

4.5.1 The roles of our approach

Combine SCRUM roles with the roles defined by Zumel and Mount
(2019).

Table 4.1: Roles of our approach.

Our approach SCRUM M

Sponsor Product owner Project sponsor

Client Stakeholder Client

Data scientist Scrum master Data scientist

Dev Team Data architect/operations

The roles of SCRUM are associated with the roles defined by
Zumel and Mount (2019). In our approach, the data scientist
leads the development team and interacts with the sponsor and
the client. The development team includes people with both
database and software engineering expertise.

4.5.2 The principles of our approach

1. Modularize the solution. Usually, in four main modules: fron-
tend, backend, dataset, and model search. The frontend is the
user interface. The backend is the server-side code. The dataset is
the data that is used to train the model. The model search is the
code that searches for the best model.

2. Version control everything. This includes the code, the data, and
the documentation. The most used tool for code version control

78

CHAPTER 4. DATA SCIENCE PROJECT

is Git. For datasets, extensions to Git exist, such as DVC3. One
important aspect is to version control the model search code. In-
teractive environments such as Jupyter notebooks are not suitable
for this purpose. They can be used to draft the code, but the final
version must be version controlled.

. Continuous integration and continuous deployment. This means

that the code is automatically (or at least semi-automatically) tested
and deployed. The backend and frontend code is tested using unit
tests. The model search code is tested using validation methods
such as cross-validation and Bayesian analysis on the discovered
models. Usually the model search code is very computationally
intensive, and it is not feasible to run it on every commit. Instead,
it is run periodically, for example once a day. If the clould in-
frastructure required to run the model search code is not avail-
able to automate validation and deploymen, at least make sure
that the code is easily runnable. This means that the code must
be well documented, and that the required infrastructure must be
well documented. Also aggregate commands using a Makefile or
a similar tool. Pay attention on the dependences between dataset
and the model training. If the dataset changes significantly, not
only the deployed model must be retrained, but the model search
algorithm may need to be rethought.

. Reports as deliverables. During sprints, the deliverables of data

exploration are reports. The reports must be version controlled
and must be reproducible. The reports must be generated in a
way that is understandable by the client and the sponsor.

. Setup quantitative goals. Do not fall on the trap of forever im-

proving the model. Instead, setup quantitative goals for the model
performance. For example, the model must have a precision of at
least 90%. Once you reach the goal, prioritize other tasks.

. Measure exactly what you want. During model validation, use

your own metrics based on the project goals. Usually, more than
one metric is needed, and they might be conflicting. Use strate-
gies to balance the metrics, such as Pareto optimization. Beware
of the metrics that are most used in the literature. They might
not be suitable for your project. Notice that during model train-
ing, some methods are limited to the loss functions that they can

3https://dvc.org/

https://dvc.org/

4.5. OUR APPROACH 79

10.

optimize. If possible, choose a method that can optimize the loss
function that you want. Even if you are not explicitly optimizing
the wanted metric, you might find a model that performs well on
that metric. That is a reason validation is important.

Report model stability and performance variance. Understand-
ing the limitations and characteristics of the model is more im-
portant than the model performance. For example, if the model
performance is high, but the model is unstable, it is not suitable
for production. Also, in some scenarios, interpretability is more
important than performance.

In user interface, mask data-science-specific terminology. Usu-
ally, data science software gives the user the option to choose the
model. In order to avoid confusion, the user interface must mask
the data-science-specific terminology. This helps non experts to
use the software consciously.

Monitor model performance in production. If possible setup feed-
back from the user interface. Avoid automation of model releases
because concept drift usually requires exploratory analysis.

Use the appropriate backend. REST APIvs websocket. The choice
depends on the requirements of the project. REST API is more
suitable for stateless requests, while websocket is more suitable
for stateful requests. For example, if the user interface must be
updated in real-time, websocket is more suitable. If the user inter-
face is used to submit batch requests, REST API is more suitable.

4.5.3 Solution search framework

TODO Move part of the chapter 8 here, dropping the sampling strategy
but bringing the main defitions.

Statistical learning theory

To understand God’s thoughts we must study statistics, for
these are the measure of His purpose.

— Florence Nightingale, her diary

We can address several kinds of problems using algorithms that learn
from data. However, we focus on the problem of inductive learning. Be-
fore we go further, let us define some terms.

81

82

CHAPTER 5. STATISTICAL LEARNING THEORY

Chapter remarks
Contents
5.1 Hypothesisandsetup 84
5.2 Thelearningproblem 85
5.2.1 A fewremarks and definitions 86
5.3 ERMinductive principle 88
5.4 Consistency of learning processes 38
5.4.1 Definition of consistency 89
5.4.2 Nontrivial consistency 91
5.5 Rate of convergence of learning processes 91
5.6 Generalization ability of learning processes 91
5.7 Construction of learning machines 91
5.7.1 Data classification methods 91
5.7.2 Regression estimation methods 91
58 Learningbias 92
5.8.1 Perceptronlearningbias 94
5.8.2 Multi-layer perceptron learning bias 94
5.8.3 Decision tree learningbias 95
5.8.4 k-nearest neighbors learningbias 98
Context
Objectives

Takeways

83

Definition 5.1: Artificial intelligence

The field that studies algorithms that exhibit intelligent behavior.

Artificial intelligence is a very broad field, including not only the
study of algorithms that exhibit intelligent behavior, but also the study
of the behavior of intelligent systems. For instance, it encompasses the
study of optimization methods, bioinspired algorithms, robotics, philos-
ophy of mind, and many other topics. We are interested in the subfield
of artificial intelligence that studies algorithms that exhibit some form
of intelligent behavior.

Definition 5.2: Machine learning

The subfield of artificial intelligence that studies algorithms that
enable computers to automatically learn from data.

Machine learning is the subfield of artificial intelligence that studies
algorithms that enable computers to automatically learn and improve
their performance on a task from experience, without being explicitly
programmed by a human being.

Definition 5.3: Predictive learning

The machine learning paradigm that studies the problem of mak-
ing predictions given known input data.

The machine learning paradigm that focuses on making predictions
about outcomes (sometimes about the future) based on historical data.
Depending on the reasoning behind the learning algorithms, the main
predictive algorithms are classified in either inductive or transductive.

Definition 5.4: Inductive learning

The machine learning approach that involves deriving general
rules from specific observations.

84 CHAPTER 5. STATISTICAL LEARNING THEORY

Induction a type of reasoning that goes from specific instances to
more general principles. Inductive learning is the machine learning ap-
proach that studies algorithms that, given data representing the set of
specific instances, derive general rules that can make predictions about
any new instances.

Figure 5.1 give us a hierarchical view of the learning field. Alterna-
tives — such as descriptive learning in opposition to predictive learning,
or transductive learning in opposition to inductive learning — are out
of the scope of this course.

Figure 5.1: Organizational chart of the learning field.

artificial intelligence

machine learning

predictive learning

inductive learning

Maybe the most general (and useful) framework for predictive learn-
ing is Statistical Learning Theory. In this chapter, we will introduce the
basic concepts of this theory.

5.1 Hypothesis and setup

Consider the set

{xpy) ti=1,..,n} (5.1)
where each sample i is associated with a feature vector x; € X and a tar-
get variable y; € Y. We assume that samples are random independent
identically distributed (i.i.d.) observations drawn according to

P(x,y) = P(y | x) P(x).

5.2. THE LEARNING PROBLEM 85

Both P(x) and P(y | x) are fixed but unknown.

This is equivalent to the original learning problem stated by Vapnik
(1999), where a generator produce random vectors x according to a fixed
but unknown probability distribution P(x) and a supervisor returns an
output value y for every input vector x according to a conditional distri-
bution function P(y | x), also fixed but unknown.

Moreover, note that this setup is compatible with the idea of tidy
data and 3NF (see section 3.4.3). Of course, we assume X, Y are only
the measured variables (or non-prime attributes). In practice, it means
that we left aside the keys in the learning process.

5.2 The learning problem

Consider a learning machine capable of generating a set of functions
f(x;0) = fo(x),0 € ®and fg : X — Y. The problem of learning is
that of choosing, among all possible fg, the one that predicts the target
variable the best possible way.

In order to learn, we must first define the loss (or discrepancy) £
between the response y to a given input x, drawn from P(x, y), and the
response provided by the learning machine.

Then, given the risk function

R©) = / £0. fo(x)) d P(x.). (5.2)

the goal is to find the function fg that minimizes R(6) where the only
available information is the training set (5.1). This is the empirical risk
minimization (ERM) problem.

This formulation encompasses many specific problems. I focus on
the two of them which I believe are the most fundamental ones: binary
data classification' and regression estimation?. 1 left aside the density
estimation problem, once it is not addressed in the remaining of the
book.

Binary data classification task. In this task, the output y take on
only two possible values, zero or one — called classes —, and the func-

1Vapnik calls it pattern recognition.
2We are not talking about regression analysis, it is closer to the scoring task definition
by Zumel and Mount (2019).

86 CHAPTER 5. STATISTICAL LEARNING THEORY

tions fg are indicator functions. For the loss
0 ify=fe(x)
1 ify # fo(x),

we aim at minimizing the risk (5.2) which becomes the probability of
classification error. The function f, in this case, is called classifier.

LY, folx)) ={

Regression estimation task. Let the outcome y be a real value and
the regression r be

ru)=/}wP@u)

The regression function is the function r = fg that minimizes the
risk function (5.2) with the loss

£, o) = (y = fo())’.

Ifr & {fg : 6 € O}, the function fg that minimizes the risk func-
tion is the closest to the regression function in the metric I,, i.e. we look
for 6’ such that

= arg m1n \/ / r(x) — f@(x)) d P(x).

The function f, in this case, is called regressor.

5.2.1 A few remarks and definitions

Supervised and semisupervised learning In both cases, classifica-
tion and regression, the learning task is to find the function that maps
the input data to the output data in the best possible way. Although
the learning machine described generate models in a supervised man-
ner, there are alternative ways to solve the inductive learning problem,
such as semisupervised approach, where the model can be trained with a
small subset of labeled data and a large subset of unlabeled data — that
is, data whose labels y are unknown.

Mislabeled data Another important premise is that all given labels
are correct. This is a strong assumption, but it is necessary to ensure
the learning process. In practice, it is possible to have mislabeled data,
but it is a different problem that must be addressed before the learning
process. Some works address the robustness of learning machines in
cases of mislabeled data (Silva and Zhao 2013).

5.2. THE LEARNING PROBLEM 87

Generative and discriminative models Anylearning machine gen-
erates a model that describes the relationship between the input and
output data. This model can be generative or discriminative. Genera-
tive models describe the joint probability distribution P(x, y) and can be
used to generate new data. Discriminative models, on the other hand,
describe the conditional probability distribution P(y | x) and are used to
make predictions. Generative models are usually much more complex
than discriminative models, but they hold more information about the
data, solving indirectly the conditional probability. As a general rule,
if you only need to solve the predictive problem, use a discriminative
model.

Multiclass classification In the binary classification task, the out-
put y is a binary variable. However, it is possible to have a multiclass
classification task, where y can take on more than two possible val-
ues. Although some learning methods can address directly the mul-
ticlass classification task, it is possible to transform the problem into a
binary classification task. The most common method is the one-versus-
all method where we train [binary classifiers, one for each class, and
the class with the highest score is the predicted class. Another method
is the one-versus-one method, where we train I(I — 1)/2 binary classi-
fiers, one for each pair of classes, and the class with the most votes is
the predicted class.

Number of inputs and outputs Note that the definition of the learn-
ing problem does not restrict the number of inputs and outputs. The
input data can be a scalar, a vector, a matrix, or a tensor, and the out-
put as well. The learning machine must be able to handle the input and
output data according to the problem.

Parametric vs nonparametric models The learning machine gen-
erates a set of functions fg where |6| can be fixed or not. If |9| is always
fixed, the model is called parametric. If |8] is not fixed beforehand, the
model is called nonparametric. Parametric models are usually simpler
and faster, but they are less flexible. In other words, it is up to the re-
searcher to choose the best model “size” for the problem. If the model
is too small, it will not be able to capture the complexity of the data. If
the model is too large, it will be too complex, too slow to train and might
overfit to the data. Non parametric models are more flexible, but they
usually require more data to be trained.

88 CHAPTER 5. STATISTICAL LEARNING THEORY

5.3 ERM inductive principle

In the following sections, z describes the pair (x, y) and L(z, 6) a generic
loss function. The training dataset is thus aset of ni.i.d. samples z, ..., z,,.

Since the distribution P(z) is unknown, the risk functional R(6) is
replaced by the empirical risk functional

R, (6) = % > Lz, 0). (5.3)
i=1

Approximating R(9) by the empirical risk functional R,,(0) is the so
called ERM inductive principle. The ERM principle is the basis of the
statistical learning theory.

Classical methods, such as least-squares, maximum likelihood, and
maximum a posteriori are all realizations of the ERM principle for spe-
cific loss functions and hypothesis spaces.

In the following sections, we address the four main questions of
learning theory. We summarize them in table 5.1.

Table 5.1: The four main questions of learning theory.

Part Question

Consistency What are the necessary and sufficient
conditions for consistency of a learning
process?

Rate of convergence How fast is the rate of convergence of
the learning process?

Generalization How can one controle the generaliza-
tion ability of the learning process?
Construction How can one construct a learning ma-

chine that satisfies the conditions of
consistency and generalization?

5.4 Consistency of learning processes

Addressing consistency of a learning process means that we are inter-
ested in the convergence of the empirical risk functional R,(6) to the

5.4. CONSISTENCY OF LEARNING PROCESSES 89

risk functional R(6) as n — oo. In other words, it is an asymptotic the-
ory about the behavior of the empirical risk functional as the sample
size n goes to infinity.

The necessary and sufficient conditions for consistency give us guar-
antees that the learning process is general and cannot be improved given
our premises. The most important topic in this section is the Vapnik-
Chervonenkis (VC) entropy.

5.4.1 Definition of consistency

An ERM method is consistent if it produces a sequence of functions f4, ,
forn = 1,2, ..., for which both the expected risk and the empirical risk
converge to the their minimum values.

Definition 5.5: Consistency of a learning process
Let 6,, be the solution of

6, = argmin R, (6).
CI=(0]

An ERM method is consistent for the set of functions
{L(z,0) : 6 € @} and the probability distribution P(z) if

iy K@) = faE 1)

Jlim Ry,(6,) = inf R(6).

This definition means that one can estimate the risk functional R(6)
by the empirical risk functional R,,(6), while the values of achieved risks
converge to the minimum value of the risk functional. See fig. 5.2.

However, since this definition of consistency includes cases of trivial
consistency, there is no way to obtain such conditions.

Consider the following example. Suppose we have found a set of
functions {fg : 6 € ©} such that the ERM method is not consistent.
Let’s add one more function ¢(z) to the set, such that

inf L(z,0) > ¢(z), Vz.
6€0
It is straightforward to see that the ERM method is consistent for the

new set of functions {L(z,6) : 6 € @} U {¢} and the probability distri-
bution P(z). In this case, the function ¢(z) gives both the minimum

90 CHAPTER 5. STATISTICAL LEARNING THEORY

Figure 5.2: Convergence of the empirical and expected risk func-
tionals.

infgeg R(O)

value of the risk functional and the empirical risk functional. This is
illustrated in fig. 5.3.

Figure 5.3: An illustrative case of trivial consistency.

— L(z,6),6 €0
— #(2)

5.5. RATE OF CONVERGENCE OF LEARNING PROCESSES

5.4.2 Nontrivial consistency

5.5 Rate of convergence of learning processes
5.6 Generalization ability of learning processes
5.7 Construction of learning machines

5.7.1 Data classification methods

5.7.2 Regression estimation methods

91

92 CHAPTER 5. STATISTICAL LEARNING THEORY

5.8 Learning bias

Learning bias, or inductive bias, is the set of assumptions that the learn-
ing machine uses to generate the set of functions {fg : 6 € ®} — see
fig. 5.4. Vapnik shows that the learning bias is the key to the gener-
alization ability of the learning process: the smaller the learning bias,
the better the generalization ability (Vapnik 1999). In an illustrative
thought experiment, one can see that “no bias means no learning,” since
the learning machine would generate all possible functions, which is
impossible, including the function that perfectly fits the training data
but fails to generalize.

Figure 5.4: Learning bias illustration.

(C)

6y 6,

A learning machine searches for the best parameter 6 in the space
©. The learning bias is the set of assumptions that the learning
machine uses to control how and where to search for the best pa-
rameter.

It is important to understand the learning bias of the main machine-
learning methods. Let’s consider the binary classification task, which is
more intuitive. Some common learning methods are the perceptron, the
multi-layer perceptron, the decision tree, and the k-nearest neighbors.

For the examples in the following subsections, we consider the datasets
for the AND and the XOR problem — see table 5.3.

5.8. LEARNING BIAS

Table 5.2: Learning machines paradigms and characteristics.

Method Paradigm Characteristics

Perceptron Functional (parametric) The perceptron is a lin-
ear classifier that gener-
ates a hyperplane that
separates the classes.

MLP Functional (parametric) The multi-layer percep-
tron is a non-linear clas-
sifier that generates a set
of hyperplanes that sepa-
rates the classes.

DT Symbolic (nonparamet-The decision tree is a

ric) classifier that comprises
a set of rules that sepa-
rate the classes.

k-NN Instance-based (non-The k-nearest neighbors
parametric) is a classifier that classi-
fies the data based on the
majority of the k-nearest
neighbors.

Table 5.3: AND and XOR datasets.

X1 Xy Y=X1AX X1 Xy Y=x0x
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

The AND and XOR datasets are binary classification datasets
where the output y is the “logical AND” and the “exclusive OR”
of the inputs x; and x,,i.e. y = x; Ax, and y = x; @ x,.

94 CHAPTER 5. STATISTICAL LEARNING THEORY

5.8.1 Perceptron learning bias

The perceptron is a linear classifier that generates a hyperplane that sep-
arates the classes. The model for our example is

1 ifwy+wix; +wyx, >0

9’ ;6 = = 9’ b =
f(x1, %, w = [wy, Wy, Wy]) {0 otherwise.

As one can see, the perceptron learning bias is the assumption that the
classes are linearly separable. The equation w - x = 0, where x =

[1, x;,x,], is the equation of a hyperplane.

Figure 5.5: Perceptron learning bias.

X3

The perceptron learning bias is the assumption that the classes
are linearly separable. The hyperplane that separates the classes
is the learning machine model. In this case, wy = —0.5, w; = 1,
and w, = —1.

In fig. 5.5, we show the hyperplane that the model w = [—0.5, 1, —1]
generates for the XOR dataset. As one can see, the classes are not lin-
early separable, and the perceptron model fails to classify the dataset
correctly, see table 5.4.

5.8.2 Multi-layer perceptron learning bias

The multi-layer perceptron (MLP) is a non-linear classifier that gener-
ates a set of hyperplanes that separates the classes. In order to simplify

5.8. LEARNING BIAS 95

Table 5.4: Truth table for the predictions of the perceptron.

X1 X3 Y| -05+4x-x
0 o0 0 -0.5 0
0 1 1 -1 5 0
1 0 1 1
1 1 O -O S 0
The perceptron model with parameters wy = —0.5, w; = 1, and

w, = —1 fails to classify the XOR dataset correctly — as any other
perceptron would do.

Think about...

What happens if we remove w, from the model?

the understanding, consider the that the activation function of the hid-
den layer is the discrete step function

1 ifx>0
0 otherwise.

o(x) = {

A model with two neurons in the hidden layer (effectively the combina-
tion of three perceptrons) is

£ %20 = fw®, w®, wdl) =
O'(w(3) . [1, o'(w(l) - X), o-(w(z) X)])

The parameters w() and w(® represent the hyperplanes that sepa-
rate the classes in the hidden layer, and w® represents how the hyper-
planes are combined to generate the output. If we set w®) = [—0.5,1, —1]
(like the perceptron in the previous example) and w® = [-0.5,-1,1],
we use the third neuron to combine the results of the first two neurons.
This way, solution for the XOR problem is setting w® = [0,1,1].

5.8.3 Decision tree learning bias

The decision tree is a non-linear classifier that generates a set of hyper-
planes that are orthogonal to the axes. Consider the decision tree in

96 CHAPTER 5. STATISTICAL LEARNING THEORY

Figure 5.6: MLP learning bias.

X3

Table 5.5: Truth table for the predictions of the MLP.

X; X, y|1%neuron 2" neuron

0 0 O 0 0 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 O 0 0 0
Think about...

Note that there are many possible solutions for the XOR problem
using the MLP.

fig. 5.7.

5.8. LEARNING BIAS

Figure 5.7: Decision tree representation.

<0.5 > 0.5
X1

9 0 <0.5 * > 0.5
= 2

<
Il
o

<>
Il
—

The decision tree that separates the AND dataset.

Figure 5.8: Decision tree learning bias.

1 { I
o
)
0 { o
0 1
X1

The decision tree learning bias is the assumption that the classes
can be separated with hyperplanes orthogonal to the axes.

98 CHAPTER 5. STATISTICAL LEARNING THEORY

Think about...

Decision tree are nonparametric models, one can easily increase
the depth of the tree to fit the data.

5.8.4 k-nearest neighbors learning bias

The k-nearest neighbors (k-NN) is a non-linear nonparametric classifier
that generate arbitrarily complex decision boundaries by “memoring”
the training data. The behavior of the boundaries depends on the value
of k and the distance metric one uses to find the nearest neighbors of a
point.

Figure 5.9: 1-NN learning bias.

1 { I
o
=
0 {] {
0 1
X1

In this particular case, the 1-NN boundaries match the decision
tree boundaries.

As k increases the boundaries become smoother: example.
See illustration: here.

https://images.squarespace-cdn.com/content/v1/5d782753c70af105c29a9b14/1580261947016-XODPUVKWPGGMJJMAXSNF/Screen+Shot+2020-01-28+at+8.38.55+PM.png
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Data handling

Tidy datasets are all alike, but every messy dataset is messy in
its own way.
— Hadley Wickham, Tidy Data

Data handling is the process of adjusting data to make it suitable for
analysis. It involves three main tasks: data transformation, data clean-
ing, and data integration.

In this chapter, we consider that tables are rectangular data struc-
tures in which values of the same column share the same properties (i.e.
the same type, same restrictions, etc.) and each column has a name.
Moreover, we assume that any value is possibly missing.

99

100 CHAPTER 6. DATA HANDLING
Chapter remarks
Contents
6.1 Datahandlingoperators 101
6.1.1 Filteringrows 102
6.1.2 Selectingcolumns 103
6.1.3 Mutatingcolumns 104
6.1.4 Aggregatingrows 105
6.1.5 Bindingdatasets 106
6.1.6 Joiningdatasets 107
6.1.7 Pivoting and unpivoting 108
6.1.8 An algebra for statistical transformations 109
6.2 Datahandling pipeline 111
6.3 Datatransformation 112
6.3.1 Reshaping 113
6.3.2 Typeconversion 113
6.3.3 Normalization 113
634 Sampling 114
6.3.5 Dimensionalityreduction. 114
6.4 Datacleaning. 115
6.4.1 Dealing with missingdata 115
6.4.2 Dealing with invalid and inconsistent information 116
6.43 Outliers. 116
6.5 Dataintegration 117
Context
Objectives

Takeways

6.1. DATA HANDLING OPERATORS 101

6.1 Data handling operators

In the literature and in software documentation, you will find a variety
of terms used to describe data handling operations!. They often refer to
the same or similar operations, but the terminology can be confusing.
In this section, I present a summary of these operations mostly based
on Wickham, Cetinkaya-Rundel, and Grolemund (2023) definitions?.

These operations are the building blocks of the data handling tasks
we will discuss in the next sections. They can also be extensively parametrized
and combined to create more elaborate data handling pipelines. For in-
stance, most of them can use predicates to define the groups, arrange-
ments, or conditions under which they should be applied.

We use the following terminology to refer to the data handling pa-
rameters:

« Predicate: a function that returns a logical value, used to filter
rows/columns or to define the groups of rows/columns to be pro-
cessed;

« Aggregation function: a function that returns a single value
given a vector of values (in which, the order of the values may
be important);

« Window function: a function that returns a vector of values
given a vector of values in which, the order of the values is im-
portant;

« Expression: a function that returns a vector of values element-
wise, used to create new columns or to modify existing ones.

Operators are also vectorized, meaning that they can be applied to
multiple columns or rows at once. This is a key feature of data handling
operations, as it allows for expressive and efficient data manipulation.

Many of them are also reversible, meaning that they can be undone.
This is important because it allows for reproducibility and traceability
of the data handling process.

They operate on a dataset (or more than one) given as input and re-
turn a new dataset as output. This is important because it allows for the

! The terminology “data handling” itself is not universal. Some authors and libraries
call it “data manipulation”, “data wrangling”, “data shaping”, or “data engineering”. I use
the term “data handling” to avoid confusion with the term “data manipulation” which has
a negative connotation in some contexts.

2Which are called verbs.

102 CHAPTER 6. DATA HANDLING

creation of data handling pipelines, where the output of one operation is
the input of the next one. Parameters like column names, predicates, ag-
gregation functions, and expressions can be passed to these operations
to customize their behavior.

Unlike traditional procedural programming, where conditional state-
ments and loops are used to manipulate data, data handling operations
are declarative. This means that they are expressed in terms of what
should be done, not how it should be done. This is a powerful abstrac-
tion that allows for the creation of complex pipelines with a few lines of
code.

6.1.1 Filtering rows

Filtering is the process of selecting a subset of rows from a dataset based
on a predicate. If more than a single predicate is used, they are com-
bined using a logical operator, such as AND or OR.

After filtering, the dataset will contain only the rows that satisfy the
predicate. Columns remain unchanged. This operation is potentially
irreversible, as the removed rows are lost.

In the basic form, each row is treated independently. For instance,
the predicate age > 18 will select all rows where the value in the age
column is greater than 18.

However, if the predicate depends on an aggregation or window func-
tion, one must specify the groups and/or the order of the rows. For
instance, the predicate age > mean(age) group by country will se-
lect the rows where the value in the age column is greater than the
mean of the age for each country. Another example is the predicate
cumsum(price) < 100 sort by date,which selectsthe rows thatsat-
isfy the condition that the cumulative sum of the price column is less
than 100 given the order of the rows defined by the date column.

The trivial group is the entire dataset, so it is usually not necessary
to specify it explicitly. However, it is usually not sensible to not specify
the order of the rows.

When dealing with real values, be aware of floating-point precision
issues. In other words, do not use the equality operator to compare real
numbers. Most of libraries provide operators to compare real numbers
within a given tolerance.

6.1. DATA HANDLING OPERATORS 103

Practical tips

+ Use filtering to remove rows that are not relevant to your
analysis;

» Use predicates to define the conditions under which rows
should be removed;

« When aggregation functions are needed to define the pred-
icate, specify the groups and the order of the rows;

« Be aware of floating-point precision issues when comparing
real numbers.

6.1.2 Selecting columns

Selecting is the process of choosing a subset of columns from a dataset.
The remaining columns are discarded. This operation is not reversible,
as the discarded columns are lost. Rows remain unchanged.

There are two main ways to select columns: by name or by predi-
cate. The former is the most common and is used to select a fixed set
of columns. The latter is used to select columns that satisfy a given
condition, i.e., the values in the columns are used to determine which
columns should be selected.

When selecting columns by name, one can use a list of column names
or a regular expression3. The latter is useful when the column names
follow a pattern that reflects the semantics of the columns. For instance,
one can use the regular expression col [0-9] + to select all columns whose
names start with col followed by one or more digits.

When selecting columns by predicate, one can use a function that
returns a logical value to define the condition under which a column
should be selected. For instance, one can use the predicate isnumeric
to select all columns that contain numeric values. Notice, however, that
the predicate is applied to each column independently and returns a
single logical value for each column.

Like filtering, selecting predicates might contain aggregation func-
tions. Although it is theorically possible to consider the order of the
values in the columns, it is not common to do so. (Especially because

3Regular expressions are very general and powerful, but they are also complex
and error-prone. An alternative is to use some form of hierarchical naming, such as
type.column to express groups of columns.

104 CHAPTER 6. DATA HANDLING

one would need to assume that the rows are previously sorted by some
criterion.) Groups, however, never make sense in this context, once the
predicate is applied to each column independently.

Depending on the context, it may be useful to “drop” columns in-
stead of selecting them. This is the same as selecting all columns ex-
cept the ones specified. This is useful when the number of columns to
be dropped is small compared to the total number of columns. Strictly
speaking, we just need to negate the predicate or the regular expression
used to select the columns.

Finally, it is very common to find libraries and framework in which
the order of the columns is important. As a result, columns can be se-
lected by position as well. I find this practice error-prone and I recom-
mend avoiding it whenever possible.

Practical tips

« Use selecting to remove columns that are not relevant to
your analysis;

« Use column names or regular expressions (or hierarchical
names) to select columns;

« Use predicates (many to one, with no aggregation func-
tions) to define the conditions under which columns should
be selected,;

« Avoid depending on the order of the columns.

6.1.3 Mutating columns

Mutating is the process of creating new columns. The operation is re-
versible, as the original columns are kept. The new columns are added
to the dataset.

The values in the new column are determined by an expression. The
expression is a function that returns a vector of values given the values
in the other columns. The expression can be a simple function, such as
y = x + 1, or a more complex function, suchasy = ifelse(x > 0,
1, 0). Here, x and y are the names of an existing and the new column,
respectively.

6.1. DATA HANDLING OPERATORS 105

One may also use an aggregation and window function in the expres-
sion. This is particularly useful when performing mutation considering
a group. In this case, the returned value is repeated (aggregation func-
tion) for each row of the same group. Like in filtering, the more explicit
you can be about order and groups, the better.

For example, the expression y = cumsum(x) group by category
sort by date will create a new column y with the cumulative sum of
the x column for each category given the order of the rows defined by
the date column.

Sometimes, the same expression can be used to create multiple columns.
This is useful when the new columns are related. To do so, one first spec-
ifies the columns in the same way as when selecting columns. Then, one
needs to specify a rule to name the new columns. For instance, x_new
= x + 1 across x matches “col[0-9]+$.

Practically speaking, mutation can overwrite existing columns. This
is useful when the new column is a replacement for the old one. For-
mally, overwriting is just a sequence of mutation and selection opera-
tions.

Practical tips

« Use mutating to create new columns that are relevant to
your analysis;

» Use expressions to define the values of the new columns;

» Use aggregation and window functions in the expression to
create new columns based on groups and order;

« Use the same expression to create multiple columns when
the new columns are related.

6.1.4 Aggregating rows

We can aggregate the rows of a dataset to create a new dataset with fewer
rows. The operation is not reversible, as the discarded rows are lost. The
columns are also lost, only the new aggregate columns remain.

The values in the new columns are determined by an aggregation
function. Like filtering and mutation, the aggregation function can be
parametrized by specifying a group and/or an order.

106 CHAPTER 6. DATA HANDLING

The resulting dataset will contain one row for each group. The val-
ues in the new columns are determined by the aggregation function ap-
plied to the values in the other columns. All columns that define the
groups are usually kept in the resulting dataset. In this case, as expected,
values of such columns are equal for all rows in the same group.

For instance, the aggregation functionmean (x) group by category
will create a new dataset with one row for each different value of category
and a new column with the mean of the x column for each group.

Practical tips

» Use aggregation to summarize the data in a dataset;

« Use aggregation functions to define the values of the new
columns;

¢ Other columns are lost;

« Use the group and order parameters to define the groups
and the behavior of the aggregation function.

6.1.5 Binding datasets

One trivial, yet important, operation is to bind datasets. This is the pro-
cess of combining two or more datasets into a single dataset. The op-
eration is reversible, as the original datasets are kept. The new dataset
contains all the rows and columns of the original datasets.

There are two ways to bind datasets: by rows or by columns. The for-
mer is used to combine datasets that have exactly the same columns but
represent different parts of the same dataset. The latter is used to com-
bine datasets that comprise the same observations (rows) but captures
different aspects of the same dataset.

When binding datasets by rows, the datasets must have the same
columns*. The resulting dataset will contain all the rows of the original
datasets. The columns remain unchanged. It is a good practice to create
a new column that represents the source of each row. For instance, if
each table represents data collected in a different year, one can create a
new column year that contains the year of the data.

“In practice, it is usually required that they share the same order of the columns as
well. This is not a theoretical requirement, but a common limitation of most libraries.

6.1. DATA HANDLING OPERATORS 107

When binding datasets by columns, the datasets must have the same
number of rows. Each matching row represent the same observation®.
The resulting dataset will contain all the columns of the original datasets.
The rows remain unchanged.

Practical tips

« Use binding to combine datasets that represent different
parts of the same dataset;

+ Use binding by rows to combine datasets that have the same
columns — in this case, create a new column that repre-
sents the source of each row;

« Use binding by columns to combine datasets that have the
same number of rows.

Talk about splitting as the reverse function, and the reason why miss-
ing columns may be a problem. Example of the unit of measurement.

6.1.6 Joining datasets

Joining is the process of combining two datasets into a single dataset
based on common columns. The operation may not be reversible, con-
sult section 3.4.1 for more details.

The join of two tables is the operation that returns a new table with
the columns of both tables. Let U be the common set of columns. For
each occurring value of U in the first table, the operation will look for the
same value in the second table. Ifit finds it, it will create a new row with
the columns of both tables. If it does not find it, no row will be created.
This operation assumes that values in U are unique in each table.

The variation described above is usually called natural or inner join.
Three other variations are possible.

+ Left join: for each occurring value of U in the first table, the oper-
ation will look for the same value in the second table. If it finds it,
it will create a new row with the columns of both tables. If it does
not find it, it will create a new row with the columns of the first
table and missing values for the columns of the second table.

SPractically speaking, either the order of the rows or a key column is used to match
the rows of the datasets. In both situations, this is equivalent to a join operation by the row
number or the key column; assuming that both datasets contains the same observations.

108 CHAPTER 6. DATA HANDLING

« Right join: the same as the left join, but the roles of the tables are
reversed.

« Outer join: for each different value of U in both tables, the oper-
ation will create a new row with the columns of both tables. If a
value is missing in one table, it will be filled with a missing value.

Practical tips

« Use joining to integrate datasets;

« Be aware of the risks of joining datasets (section 3.4.1), for
example, that some joins may create invalid rows;

« Use the appropriate variation of the join operation in appli-
cations.

6.1.7 Pivoting and unpivoting

Another important operation is to pivot and unpivot datasets. These
are the processes of transforming a dataset from a long format to a wide
format and vice versa. The operations are reversible and they are the
inverse of each other.

Pivoting requires to specify a name column — whose discrete and fi-
nite possible values will become the names of the new columns — and
a value column — whose values will be spread across the rows. All re-
maining columns are considered to be keys, uniquely identifying each
row of new the dataset.

Unpivoting® is the reverse operation. One must specify all the columns
whose names are the values of the before called name column. The val-
ues of these columns will be gathered into a new column. As before, all
remaining columns are considered to be keys.

In practical applications, where not all remaining columns are keys,
one must aggregate rows beforehand.

Table 6.1 shows an example of pivoting. The left table is in the long
format and the right table is in the wide format. The name column is
year, the value column is value, and the remaining column is name
which is an unique identifier of the rows in the wide format.

6Which Wickham, Cetinkaya-Rundel, and Grolemund call pivot longer.

6.1. DATA HANDLING OPERATORS 109

Table 6.1: Pivoting example.

name year value

A 2019 1

A 2020 5 name 2019 2020 2021
A 2021 3 A 1 2 3
B 2019 4 B 4 5 6
B 2020 5

B 2021 6

The left table is in the long format and the right table is in the
wide format. The name column is year and the value column is
value.

Practical tips

« Use pivoting to transform datasets from a long format to a
wide format;

« Use unpivoting to transform datasets from a wide format to
a long format;

« Be aware of the need to aggregate rows before unpivoting.

6.1.8 An algebra for statistical transformations

In recent years, some researchers made an effort to create a formal al-
gebra for statistical transformations. The idea is to create a set of op-
erations that can be combined to create complex statistical transforma-
tions. This is similar to the idea of relational algebra, which is a set of
operations that can be combined to create complex queries.

The difference between relational algebra and a formal algebra for
statistical transformations is that the latter is more complex. This is be-
cause statistical transformations are more complex than queries. For
instance, the concept of missing data is not present in relational alge-
bra, but it is in statistical transformations.

Song, Jagadish, and Alter (2021), for example, propose a formal par-
adigm for statistical data transformation. They present a data model,

110 CHAPTER 6. DATA HANDLING

an algebra, and a formal language. Their goal is to create a standard for
statistical data transformation that can be used by different statistical
software.

However, in my opinion, the major deficiency of their work is that
they mostly try to “reverse engineer” the operations that are commonly
used in statistical software. This is useful for the translation of code
between different software, but it is not productive to advance in the
theoretical understanding of statistical transformations.

If one ought to tackle the challenge of formally expressing statisti-
cal transformations, I think one should start from the basic operations.
Basic operations mean that they are irreducible, i.e., they cannot be ex-
pressed as a sequence of other operations.

Some thoughts about it:

« Binding columns can be expressed as a join operation, thus it is
not a basic operation.

« Some software provide features that can be better expressed in
other (often simpler) ways. Row naming is an example. It is use-
ful to keep track of the origin of each row, but names can be just
another column. I argue for excluding row naming in a formal
algebra.

« Some operations are very useful and recurring, even if they are
not basic. Such operations must be omitted from the formal alge-
bra for the sake of simplicity. However, any software that imple-
ments a language for the formal algebra can provide syntax sugar
for these operations.

« Not defining your algebra in terms of a specific programming lan-
guage is a good practice. This is because the algebra is a theoret-
ical concept and should be independent of any implementation.
It also gives opportunities to rethink the things that commonly
done in a specific way. This can lead to new insights and correct
error-prone practices.

« Pivoting seems to be “different” enough to the other operations to
be considered in the set of basic operations. However, it is not hard
to see that they can be rewritten as combinations with the meta
tables containing the possible values of the attributes (or some sort
of aggregation function).

6.2. DATA HANDLING PIPELINE 111

6.2 Data handling pipeline

Before we study the data handling tasks, we need to understand that a
data handling pipeline is a sequence of operations that does depend on
the input data. This might seem obvious, but the implications are not.

A common error in data handling is to perform operations ad hoc,
usually leading to data leakage. For instance, one might impute missing
values before splitting the data into training and testing sets. This is a
mistake because the imputation is based on the entire dataset, including
the testing set.

To avoid this kind of error, one must declare’ the operations that will
be performed on the data before applying them. This is usually done by
creating the full data handling pipeline beforehand.

The pipeline, like a model, must be “fitted” to the data. This means
that parameters of the operations are not fixed until the first data is given
as input. Subsequent data fed to the pipeline will be handled keeping
the first “learned” parameters.

Consider the following example. Suppose we have a dataset with
missing values for variable A. We want to impute the missing values and
then standardize A. The pipeline is created as follows: D -> impute_zero(A)
-> standardize(A).

The operation impute_zero (A) is parametrized by the value 0, which,
in this case, is fixed. However, the operation standardize (A) is parametrized
by the mean and the standard deviation of the values in A. These values
are not fixed until the first data is given as input.

A note about fixed parameters

Even if your data handling pipeline contains operations that have
fixed parameters and can be safely applied to data before the
model search, I strongly recommend that you declare the pipeline
as a whole. This is because it is easier to maintain and reproduce
the data handling process, especially in deployment. Performing
ad hoc handling in your data is a source of errors and important
transformations can be forgotten when receiving new data.

In a practical scenario, the source code of the model search method
includes not only strategies for the model, but also the data handling

"This is the declarative nature of data handling operations.

112 CHAPTER 6. DATA HANDLING

pipeline. Moreover, the deployment of the model includes the data han-
dling pipeline as well. In other words, it does not matter which model
is used, in the example above, the mean and the standard deviation of
the values in A should be stored and used in deployed models.

In terms of reproducibility and validation, having a single consoli-
dated pipeline is crucial.

A note about “filtering” operations

Some operations may conditionally remove rows from the dataset.
For instance, after observing that there exists few missing values
in an important column, one might decide to remove rows with
missing values in it. In production, this means that some new
observations might be discarded before reaching the model itself.
However, the user still expects an answer from the model. In this
case, one must define either a default value for the answer or a
default behavior to handle discarded examples.

XXX: maybe state that before reaching the pipeline data is already
tidy, this way simple integration (not enhancement), pivoting and ag-
gregating are kept outside the pipeline. These operations must depend
only on variable names and not variable values.

6.3 Data transformation

The first task in data handling is data transformation. This is the process
of adjusting the format and the types of the data to make it suitable for
analysis.

Usually, the starting point of data transformation is to make the data
tidy, i.e., to have each variable in a column and each observation in a
row. Remember that, depending on the problem definition, we target a
particular observational unit. Having a clear picture of the observational
unit is important to define the columns and the rows of the dataset.

Then, when the data format is acceptable, we can perform a series of
operations to make the column’s types and values suitable for modeling.
The reason for this is that most machine learning methods require the
input variables to follow some restrictions. For instance, some methods
require the input variables to be real numbers, others require the input
variables are in a specific range, etc.

6.3. DATA TRANSFORMATION 113

6.3.1 Reshaping

TODO: pipeline exceptions: like pivoting and aggregating are kept out-
side the pipeline.

Reshaping is the process of changing the format of the data. The
most common reshaping operations are pivoting and unpivoting, which
we have already discussed. However, there are other reshaping opera-
tions that are useful in practice.

For instance, one can reshape a dataset by splitting a column into
multiple columns. This is useful when a column contains multiple val-
ues that should be separated. This can be done with mutation with ap-
propriate expressions. Some frameworks might provide special func-
tions to do this, usually called splitting functions.

We can also consider reshaping the operations of filtering, selecting,
and aggregating. Filtering is usually done to reduce the scope of the
data, given some conditions on the variables. Selecting is usually done
to remove irrelevant variables or highly correlated ones. Aggregating in
a reshaping task is usually applied together with pivoting to change the
observational unit of the dataset.

6.3.2 Type conversion

Type conversion is the process of changing the type of the values in the
columns. This is usually done to make the data suitable for modeling.
For instance, some machine learning methods require the input vari-
ables to be real numbers.

The most common type conversions are from categorical to numer-
ical and from numerical to categorical. The former is usually done by
creating dummy variables, i.e., a new column for each possible value
of the categorical variable. This transformation is also known as one-
hot encoding. The latter is usually done by binning (discretizing) the
numerical variable, either by frequency or by range.

6.3.3 Normalization

Normalization is the process of scaling the values in the columns. Thisis
usually done to keep data in a specific range or to make the data compa-
rable. For instance, some machine learning methods require the input
variables to be in the range [0, 1].

The most common normalization methods are standardization and
rescaling. The former is done by subtracting the mean and dividing by

114 CHAPTER 6. DATA HANDLING

the standard deviation of the values in the column. The latter is per-
formed so the values are in a specific range, usually [0, 1] or [—1, 1].

Clamping after rescaling

In production, it is common to clamp the values after rescaling.
This is done to avoid the model to make predictions that are out
of the range of the training data.

Related to normalization is the log transformation. This is usually
done to make the data more symmetric or to reduce the effect of out-
liers. The log transformation is the process of taking the logarithm of
the values in the column.

6.3.4 Sampling

Sampling is the process of selecting a random subset of the data. This
is usually done to reduce the size of the data or to create a balanced
dataset. For instance, some machine learning methods are heavily af-
fected by the number of observations in each class. Also, some methods
are computationally expensive and a smaller dataset might be enough
to solve the problem.

The most common sampling methods are random sampling and re-
sampling®. The former is done by selecting a random subset of the data.
The latter is done by selecting a random subset of the data with replace-
ment.

While random sampling is useful to reduce the size of the data, re-
sampling can be used to increase the size of the data. (Although this has
some caveats.) Moreover, resampling can also create variations of the
original dataset with the same distribution of the values.

6.3.5 Dimensionality reduction

Dimensionality reduction is the process of reducing the number of vari-
ables in the data. This is usually done to reduce the complexity of the
model or to identify irrelevant variables. The so-called curse of dimen-
sionality is a common problem in machine learning, where the number
of variables is much larger than the number of observations.

8Resampling is the process of sampling with replacement, sometimes called boot-
strapping.

6.4. DATA CLEANING 115

There are two main types of dimensionality reduction algorithms:
feature selection and feature extraction. The former is done by selecting
a subset of the variables that leads to the best models. The latter is done
by creating new variables that are combinations of the original ones.

Feature selection can be performed before modeling (filter), together
with the model search (wrapper), or as a part of the model itself (embed-
ded).

Feature extraction is usually done by linear methods, such as prin-
cipal component analysis (PCA), or by non-linear methods, such as au-
toencoders. These methods are able to compress the information in the
data into a smaller number of variables.

Practice!

Can you identify which data transformation operations are used
to make datasets presented in chapter 3 tidy?

6.4 Data cleaning

Data cleaning is the process of removing errors and inconsistencies from
the data. This is usually done to make the data more reliable and to avoid
bias in the analysis.

6.4.1 Dealing with missing data

Since most models do not cope with missing data, it is crucial to deal
with it in the data handling pipelines.
There are four main strategies to deal with missing data:

« Remove the rows with missing data;

Remove the columns with missing data;
« Impute the missing data;
+ Use an indicator variable to mark the missing data.

Removing rows and columns are commonly used when the num-
ber of missing data is small compared to the total number of rows or
columns. However, be aware that removing rows can artificially change

116 CHAPTER 6. DATA HANDLING

data distribution, especially when the missing data is not missing at ran-
dom.

Imputing the missing data is usually done by replacing the missing
values with some statistic of the available values in the column, such
as the mean, the median, or the mode. This is a simple and effective
strategy, but it can introduce bias in the data. Also, it is not suitable
when one is not sure whether the missing data is missing because of a
systematic error or phenomenon.

For this case, creating an indicator variable is a good strategy. This is
done by creating a new column that contains a logical value indicating
whether the data is missing or not’. By doing so, the model can learn
the importance of the missing data'®.

6.4.2 Dealing with invalid and inconsistent information

Sometimes, during data collection, information is recorded using spe-
cial codes. For instance, the value 9999 might be used to indicate that
the data is missing. Such codes must be replaced with more appropriate
values before modeling.

Another common problem is inconsistent information. For instance,
the same category might be represented by different names. This is usu-
ally done by creating a dictionary that maps the different names to a
single one.

It is also useful to check whether all columns that store physical
quantities have the same unit of measurement. If not, one must con-
vert the values to the same unit.

If one knows that a variable has a specific range of values, it is use-
ful to check whether the values are within this range. If not, one must
replace the values wit missing data or with the closest valid value.

6.4.3 Outliers

Outliers are observations that are significantly different from the other
observations. They can be caused by errors in the data collection pro-
cess or by the presence of a different phenomenon. In both cases, it is
important to deal with outliers before modeling.

There are many outliers detection methods, consult TODO.

9Some kind of imputation is still needed, but we expect the model to deal better with
it
10Sometimes the indicator variable is already present: pregnancy and sex example.

6.5. DATA INTEGRATION 117

6.5 Data integration

Data integration is the process of combining data from different sources
into a single dataset. This is usually done to create a more complete
dataset or to create a dataset with a different observational unit.

To perform integration, consider the discussions in sections 3.4.1
and 3.4.3.

Additionally, one must consider the following points:

+ Sometimes the same column may have different names in differ-
ent datasets. Redundant columns must be removed.

 Separate datasets that share the same variables usually happen be-
cause there is a hidden variable that is not present in the datasets.
During integration, the new variable must be created.

Hard to incorporate in the pipeline when joins only, but data en-
hancement works better inside the pipeline.

Model evaluation

x It’s dangerous to go alone! Take this.
— Unnamed Old Man, The Legend of Zelda

One fundamental step in the development of a data driven solution for
a task is the evaluation of the model. This chapter presents strategies to
measure performance of classifiers and regressors, and how to interpret
the results.

We consider the following setup. Let D = {(X;,y;)}i=1,...» be the
dataset, where x; is a feature vector and y; is the target value. We assume
that the dataset is split into a training set, given by indices Jyining, and
a test set, given by indices Jiesi, Where Jipining N Jiest = @ and Jiraining U
Jiest =11, ..., 0}

For evaluation, we assume that the model has been trained on the
training set and that predictions are made on the test set. We denote the
predicted values as y; for i € J,., such that

.)’)i = f@(xi)’

where 0 is the solution found by the learning algorithm from the train-
ing set, see eq. (5.2).

119

120

CHAPTER 7. MODEL EVALUATION

Chapter remarks

Contents
7.1 Binary classification evaluation 121
7.1.1 Confusionmatrix 121
7.1.2 Performance measures 121
7.2 Regression estimation evaluation 123
7.3 Probabilistic classification evaluation 124
7.3.1 Receiver operating characteristic. 125
7.3.2 Detection error trade-off 126
7.4 Othervariations 128

Context
Objectives

Takeways

7.1. BINARY CLASSIFICATION EVALUATION 121

7.1 Binary classification evaluation

In order to assess the quality of a binary classification model, we need to
know which samples in the test set were classified into which classes.
This information is summarized in the confusion matrix, which is the
basis for performance measures in classification tasks.

7.1.1 Confusion matrix

The confusion matrix is a table where the rows represent the true classes
and the columns represent the predicted classes. The diagonal of the
matrix represents the correct classifications, while the off-diagonal ele-
ments represent errors. For binary classification, the confusion matrix
is given by

Predicted

1 0

Expected 1 (TP FN
0 <FP TN)

where
« FP is the number of false positives [{i € Tt | i = 0A P; = 1},
+ FN is the number of false negatives |{i € Jiei; | yi = 1 A P; =0},

+ TP is the number of true positives |{i € T | yi = 1A P; = 1},
and

+ TN is the number of true negatives |{i € et | ¥i = 0 A P; = 0}].

7.1.2 Performance measures

From the confusion matrix, we can derive several performance mea-
sures. The most common ones are the accuracy, precision, recall, and
F-score.

Accuracy is the proportion of correct predictions over the total num-
ber of samples in the test set, given by

Accuracy = TP+ TN
Y= TP+ TN+ FP+ EN’

This measure is simple and easy to interpret, but it can be misleading
when the classes are imbalanced — i.e. when the number of samples in

122 CHAPTER 7. MODEL EVALUATION

each class is very different. Consider the case where the dataset has 90%
of samples in class 0 and 10% in class 1; a classifier that always predicts
class 0 will have an accuracy of 90%, but it is not useful for the task.

Specificity isthe proportion of true negative predictions over the total
number of samples that are actually negative, given by

TN

Speciﬁcity = ’IN—-I-FP

This measure is useful when the cost of false positives is high, as it quan-
tifies the ability of the classifier to avoid false positives. A test with a
higher specificity has a lower type I error rate. In terms of a medical
diagnosis, a type I error corresponds to diagnosing a patient as sick!
when they are healthy. A classifier that always predicts class 1 will have
a specificity of 0% in the example above. On the other hand, a classifier
that always predicts class 0 will have a specificity of 100%.

Precision is the proportion of true positive predictions over the total
number of samples predicted as positive, given by

TP

Precision = TP+ TP

This measure is useful when the cost of false positives is high, as it quan-
tifies the ability of the classifier to avoid false positives. For example,
in a medical diagnosis task, precision is important to avoid unneces-
sary treatments. However, precision does not consider false negatives,
which can be problematic in other scenarios. For instance, in fraud de-
tection, a false negative means that a fraudulent transaction was not
detected. A classifier that always predicts class 1 will have a precision
of 10% in the example above. On the other hand, a classifier that always
predicts class 0 will have a precision of 0% — consider 0/0 = 0.

Recall isthe proportion of true positive predictions over the total num-
ber of samples that are actually positive, given by

TP

Recall = TP-F—FI\I

This measure is useful when the cost of false negatives is high, as it quan-
tifies the ability of the classifier to avoid false negatives. It can also be

ISick is the positive class

7.2. REGRESSION ESTIMATION EVALUATION 123

interpreted as the “completeness” of the classifier: how many positive
samples were correctly identified. For example, in a medical diagnosis
task, recall is important to avoid missing a diagnosis. A classifier that
always predicts class 1 will have a recall of 100% in the example above.
On the other hand, a classifier that always predicts class 0 will have a
recall of 0%.

F-score is the weighted harmonic mean of precision and recall given

by

(1 + B?) - Precision - Recall
2 - Precision + Recall

F-score(f) =

s

where (8 is a parameter that controls the weight of precision in the mea-
sure. The most common value for 8 is 1, which gives the F,-score. The
F-score is useful when we want to balance precision and recall, as it con-
siders both false positives and false negatives. For instance, a classifier
that always predicts class 1 will have an F;-score of 0.18 in the exam-
ple above. On the other hand, a classifier that always predicts class 0
will have an Fy-score of 0. Note that, although guessing 1 is better than
guessing 0 in terms of F,-score, this measure is much better than accu-
racy to evaluate the performance of the classifier in imbalanced prob-
lems.

7.2 Regression estimation evaluation

Performance measures for regression tasks are usally calculated based
on the error or residual €; = y; — y; for alli € J;. The most common
measures are the mean absolute error, mean squared error.

Mean absolute error isthe average of the absolute values of the resid-
uals, given by

1 n
MAE = = > ¢j].
ni:l

This measure is easy to interpret and gives an idea of the average error
of the model.

Mean squared error is the average of the squared residuals, given by

1 n
MSE = = > .
ni:l

124 CHAPTER 7. MODEL EVALUATION

This measure penalizes large errors more than the mean absolute error,
as the squared residuals are summed.

Root mean squared error is the square root of the mean squared

error, given by
RMSE = VY MSE.

This measure is in the same unit as the target variable, which makes it
easier to interpret.

7.3 Probabilistic classification evaluation

A particular case of the regression estimation is when we want to esti-
mate the probability? of a sample belonging to the positive class — i.e.
y = 1. In this case, the output of the model should be a probability in
the interval [0, 1]. We can use a threshold 7 to convert the probabilities
into binary predictions. The default threshold is usually 7 = 0.5 — a
sample is positive if the probability is greater than or equal to 0.5 and
negative otherwise —, but it can be adjusted to change the trade-off be-
tween recall and specificity. A low threshold, 7 ~ 0, will increase recall
at the expense of specificity, while a high threshold, t =~ 1, will increase
specificity at the expense of recall.

Thus, any regressor fr : X — [0, 1] can be converted into a binary
classifier fo : X — {0,1} by comparing the output with the threshold
T
1 if frx) > 1,

0 otherwise.

fe®) ={

Before we discuss the performance measures for probabilistic clas-
sifiers, let us define some rates that are used in the evaluation. The true
positive rate (TPR) is the proportion of true positive predictions over the
total number of samples that are actually positive,

TP
TP + FN’

and the false positive rate (FPR) is the proportion of false positive pre-
dictions over the total number of samples that are actually negative,

_FP
" FP+ TN’
2 Although the term probability is used, the output of the regressor does not need to

be a probability in the strict sense. It is a confidence level in the interval [0, 1] that can be
interpreted as a probability.

TPR =

FPR

7.3. PROBABILISTIC CLASSIFICATION EVALUATION 125

The performance of the possible variations of the classifiers can be
evaluated using appropriate measures. Consider the example below of
a given test set and the predictions of a regressor. We first sort the sam-
ples by the predicted probabilities and then calculate the true positive
rate and false positive rate for each threshold. We need to consider only
thresholds equal to the unique predicted values to understand the vari-
ations.

Table 7.1: Illustrative example of probability .

Predicted/Threshold Expected TPR FPR

-/ - 0/5 0/5
0.98 1 1/5 0/5
0.97 1 2/5 0/5
0.80 0 2/5 1/5
0.72 1 3/5 1/5
0.70 1 4/5 1/5
0.66 0 4/5 2/5
0.52 0 4/5 3/5
0.40 1 5/5 3/5
0.25 0 5/5 4/5
0.10 0 5/5 5/5

From this table, we can calculate the performance measures that are
useful for probabilistic classifiers.

7.3.1 Receiver operating characteristic

The receiver operating characteristic (ROC) curve is a graphical repre-
sentation of the trade-off between the true positive rate and the false
positive rate as the threshold 7 is varied. The ROC curve is obtained by
plotting the TPR against the FPR for all possible thresholds. Figure 7.1
is the ROC curve for the example in table 7.1.

The ROC curve is useful to explore the trade-off between recall and
specificity. The diagonal line represents a random classifier, and points
above the diagonal are better than random. The area under the ROC
curve (AUC) is a possible measure of the performance of the classifier.
The AUC is scale invariant, which means that it measures how well pre-

126 CHAPTER 7. MODEL EVALUATION

Figure 7.1: [llustrative example of ROC curve.

11 —

0.8 /<

0.6 1 7

TPR

0.4 S

0.2 4 -

FPR

ROC curve for the example in table 7.1. The diagonal line repre-
sents a random classifier, and points above the diagonal are better
than random.

dictions are ranked, rather than their absolute values. In our example,
the AUC is 0.8.

7.3.2 Detection error trade-off

The detection error trade-off (DET) curve is a graphical representation
of the trade-off between the false positive rate and the false negative rate

(FNR),
FN

- TP+FN
The DET curve is similar to the ROC curve, but by plotting only the
FPR and FNR, it gives a better view of the “cost” (errors) of different
thresholds. The DET curve is especially useful when the cost of false
positives and false negatives is different. The DET curve of our example
is shown in fig. 7.2.

Usually, the DET curve is plotted in a normal deviate scale (Martin
et al. 1997). In this scale, the axes are transformed to show the error
rates in a more linear way.

FNR 1-TPR.

7.3. PROBABILISTIC CLASSIFICATION EVALUATION 127

Figure 7.2: Illustrative example of DET curve.

1-
0.8 1

0.6 1

FNR

0.4 1

0.2

0 0.2 0.4 0.6 0.8 1
FPR

DET curve for the example in table 7.1. The diagonal line repre-
sents a random classifier, and points below the diagonal are better
than random.

Figure 7.3: Illustrative example of DET curve (normal deviate
scale).

—éa —éa —ia dcr 1‘0 26 36
FPR

128 CHAPTER 7. MODEL EVALUATION

7.4 Other variations

Some other points:
« measures for classification are asymmetric;
« prefer measures that work well with averaging;
« multiclass how to evaluate?

« customize to address the real problem.

Validation and experimental planning

All models are wrong, but some are useful.

— George E. P. Box, Robustness in Statistics

Once we have defined what an inductive problem is, we can start to
think about how to solve it in practical terms.

In this chapter, we present the experimental planning one can use
in the data-driven parts of a data science project. Experimental plan-
ning in the context of data science involves designing and organizing
experiments to gather performance data systematically in order to reach
specific goals or test hypotheses.

The reason we need to plan experiments is that data science is ex-
perimental, i.e. we usually lack a theoretical model that can predict the
outcome of a given algorithm on a given dataset — in other words, the
quality of the solution given a certain approach. This is why we need to
run experiments to gather data and make inferences from it.

There is not a single way to plan experiments, but there are some
common steps that can be followed to design a good experimental plan.
In this chapter, we present a framework for experimental planning that
can be used in most data science projects.

129

130 CHAPTERS8. VALIDATION AND EXPERIMENTAL PLANNING
Chapter remarks
Contents
8.1 Elements of an experimentalplan 131
8.2 Estimating expected performance 131
821 Crossvalidation 135
8.2.2 Validationmethods 136
8.3 Comparing strategies 138
8.3.1 About nesting experiments 139
84 Grouping 139
Context
Objectives

Takeways

8.1. ELEMENTS OF AN EXPERIMENTAL PLAN 131

8.1 Elements of an experimental plan

There are important elements that should be considered when design-
ing an experimental plan. These elements are:

« Hypothesis: The main question that the experiment aims to val-
idate. In this chapter, we address common questions in data sci-
ence projects and how to validate them.

« Data: The dataset that will be used in the experiment. In chap-
ter 3, we address topics about collecting and organizing data.

« Solution search algorithm!: Techniques that find a solution for
the task. For us, a task includes both adjusting the appropriate
data-handling pipeline and learning the model. The theoretical
basis for these techniques is in chapter 5, and the practical aspects
are in chapter 6 and ??.

+ Performance measure: The metric that will be used to evaluate
the performance of the model. Refer to chapter 7 for more infor-
mation.

A general example of a description of an experimental plan is “What
is the probability of the technique A to find a model that reaches a per-
formance X in terms of metric Y in the real-world given dataset Z as
training set (assuming Z is a representative dataset)?”

Another example is “Is technique A better than technique B for find-
ing a model that predicts the output with D as a training set in terms of
metric E?”

We consider these two cases: estimating expected performance and
comparing algorithms.

8.2 Estimating expected performance

When dealing with a data-driven solution, the available data is a repre-
sentation of the real world. So, we have to make the best use of the data
we have to estimate how good our solution is expected to be in produc-
tion.

1We use the term “search” because, the chosen algorithm aim at optimizing both the
parameters of the data handling pipeline and the ones of the model

132 CHAPTER 8. VALIDATION AND EXPERIMENTAL PLANNING

Obviously, the more data we use to search for a solution, the better
the solution is expected to be. Thus, we use the whole dataset for de-
ploying a solution. But, what method for preprocessing and learning
should we use? How well that technique is expected to perform in the
real world?

Let us say we fix a certain technique, let us call it A. Let M be the
solution found by A using the whole dataset D. If we assess M using the
whole dataset D, the performance p we get is optimistic. This is because
M has been trained and tested on the same data.

Hold out does not solve the problem.

To estimate better the expected performance of M in production, we
can use the following experimental plan.

Sampling strategy As any statistical evaluation, we need to generate
samples of the performance of the possible solutions that A is able to ob-
tain. To do so, we use a sampling strategy to generate datasets Dy, D,, ...
from D. Since we assume the dataset D is a representative sample of the
real world, we must ensure that each sampled dataset has similar char-
acteristics. So handling operators like balancing the dataset should be
applied only afterwards. Each dataset is further divided into a training
set and a test set, which must be disjoint. The training set is thus used
to find a solution — M;, M,, ... for each training set — and the test set
is used to evaluate the performance — p;, p,, ... for each test set — of
the solution. The test set emulates the real-world scenario, where the
model is used to make predictions on new data.

Solution search algorithm The solution search algorithm A involves
both a given data handling pipeline and a machine learning method.
Both of them generate a different result for each dataset D; used as an
input. In other words, the parameters ¢ of the data handling operators
are adjusted — see chapter 6 — and the parameters 6 of the machine
learning model are adjusted — see chapter 5. These parameters, [¢y, Ok]
are the solution M;, and must be calculated exclusively using the train-
ing set Dk,train'

Prediction Once the parameters ¢ and 9 are fixed, we apply them in
the test set Dy ;. For each sample (X;,y;) € D s, We calculate the
prediction y = f4 5(x;). The target value y is called the ground-truth or
expected outcome.

8.2. ESTIMATING EXPECTED PERFORMANCE 133

Performance assessment Given a performance metric R, for each
dataset Dy, we calculate

Pk = R([yi]i s [yl]l) .

Note that, by definition, pj is free of data leakage, as [¢y, O] are found
without the use of the data in Dy . and to calculate y; we use only x;
(with no target y;).

Analysing the results Finally, we study the sampled performance
values py, p,, ... like any other statistical data. We can calculate sum-
mary statistics, like the mean, median, variance, and standard deviation,
or visualization techniques, like box plots or other distribution-based
plots. We can also use hypothesis tests to calculate the probability of
the performance of the solution being better than a certain threshold.

Evaluation vs. validation

We call evaluation the process of assessing the performance of
a solution using a test set. Validation, on the other hand, is the
process of interpreting or confirming the meaning of the evalua-
tion results. Validation is the process of determining the degree
to which the evaluation results support the intended use of the
solution (unseen data).

Interpretation The results are not the “real” performance of the so-
lution M in the real world, as that would require new data to be col-
lected. However, we can safely interpret the performance samples as
being sampled from the same distribution as the performance of the so-
lution M.

A summary of the experimental plan for estimating expected perfor-
mance is shown in fig. 8.1.

134 CHAPTER 8. VALIDATION AND EXPERIMENTAL PLANNING

Figure 8.1: Experimental plan for estimating expected perfor-
mance of a solution.

Sampling
strategy

I

1
@D

1

!
|
|
|
Looo

Data

1 : . Machine
1 w handling learning

pipeline

Summary Hypothesis
statistics test

i i i f

The experimental plan for estimating the expected performance
of a solution involves sampling the data, training and testing the
solution, evaluating the performance, and validating the results.

Visualization

8.2. ESTIMATING EXPECTED PERFORMANCE 135

8.2.1 Cross validation

The most common sampling strategy is the cross-validation. It assumes
that data is independent and identically distributed (i.i.d.). The cross-
validation technique divides the dataset into r folds randomly, with the
same size. Each part (fold) is used as a test set once and as a training set
r — 1 times. So, first we use as training set folds 2, 3, ..., 7 and as test set
fold 1. Then, we use as training set folds 1, 3, ..., ¥ and as test set fold 2.
And so on. (See fig. 8.2.)

Figure 8.2: Cross-validation

Fold 1 Fold 2 Fold 3 Fold 4

Cross-validation is a technique to sample training and test sets. It
divides the dataset into r folds, using r — 1 folds as a training set
and the remaining fold as a test set.

If possible, one should use repeated cross-validation, where this pro-
cess is repeated many times. Also, when dealing with classification
problems, we should use stratified cross-validation, where the distribu-
tion of the classes is preserved in each fold.

Also, the application of a single cross-validation sampling enables us
to create a predicted vector for the whole dataset. This is done by con-
catenating the predictions for each fold. (Note however that the predic-
tions are not totally independent, as they share some training data. This
dependency should be taken into account when analyzing the results.)
This vector can be used to perform hypothesis tests — like McNemar’s
test, see section 8.3 — or to plot ROC (Receiver Operating Characteris-
tic) curves or DET (Detection Error Tradeoff) curves — see chapter 7.

136 CHAPTER 8. VALIDATION AND EXPERIMENTAL PLANNING

8.2.2 Validation methods

Validation is the process of interpreting or confirming the meaning of
the evaluation results. It is the process of determining the degree to
which the evaluation results support the intended use of the solution.

Sometimes, it is as simple as calculating the mean and standard de-
viation of the performance samples. Other times, we need to use more
sophisticated techniques, like hypothesis tests or Bayesian analysis.

Let us say our goal is to reach a certain performance threshold p.
After an experiments done with 10 repeated 10-fold cross-validation, we
have the average performance p and the standard deviation o. If p —
o > p,, it is very likely that the solution will reach the threshold in
production. Although this is not a formal validation, it is a good and
likely enough indication.

Also, it is common to use visualization techniques to analyze the re-
sults. Box plots are a good way to see the distribution of the performance
samples.

A more sophisticated technique is to use Bayesian analysis. In this
case, we use the performance samples to estimate the probability dis-
tribution of the performance of the algorithm. This distribution can be
used to calculate the probability of the performance being better than a
certain threshold.

Benavoli et al. (2017) propose an interesting Bayesian test that ac-
counts for the overlapping training sets in the cross-validation®. Let
z = pr — D* be the difference between the performance of the k-th
fold and the performance goal p*, a generative model for the data is

z=1u+v,

where z = (zy, 25, ..., 2,) is the vector performance gains, 1 is a vec-
tor of ones, u is the parameter of interest (the mean performance gain),
and v ~ MVN(0, X) is a multivariate normal noise with zero mean and
covariance matrix X. The covariance matrix X is characterized as

i =0% % =0,

foralli # j € {1,2,...,n}, where p is the correlation (between folds)
and o2 is the variance. The likelihood model of the data is

1 1
P@| 1,3) = exp(—5(- WTE @ - W) ———.
2 @y 2\IE]
2This is actually a particular case of the proposal in the paper, where the authors
consider the comparison between two performance vector — which is the case described
in section 8.3.

8.2. ESTIMATING EXPECTED PERFORMANCE 137

According to them, such likelihood does not allow to estimate the corre-
lation from data, as the maximum likelihood estimate of p is zero regard-
less of the observations. Since p is not identifiable, the authors suggest
using the heuristic where p is the ratio between the number of folds and
the total number of performance samples.

To estimate the probability of the performance of the solution being
greater than the threshold, we first estimate the parameters u and v =
o2 of the generative model. Benavoli et al. (2017) consider the prior

P(u,v | uo» %9, @, b) = NG(u, v; o, ¢, @, b),

that isa Normal-Gamma distribution with parameters (g, ¥, a, b). This
is a conjugate prior to the likelihood model. Choosing the prior param-
eters ug = 0, xg = o0, a = —1/2, and b = 0, the posterior distribution
of u is a location-scale Student distribution. Mathematically, we have

_ (1
P(u | z, ug, %9, @, b) = St(u; n — 1’Z’(ﬁ + %)sz),

where

N

n

-y
== Zj,

nia

and

=
2 _ 5)2
$t=-—7 ;(zi—z) .

Thus, validating that the solution obtained by the algorithm in pro-
duction will surpass the threshold p* consists of calculating the proba-
bility

P(u>0]z)>y,
where y is the confidence level.

Note that the Bayesian analysis is a more sophisticated technique
than the null hypothesis significance testing, as it allows us to estimate
the probability of the performance of the solution being better than a
certain threshold.

Also, be aware that the choice of the model and the prior distribution
can affect the results. Benavoli et al. (2017) suggest using 10 repetitions
of 10-fold cross-validation to estimate the parameters of the generative
model. They also show experimental evidence that their choices are
robust to the choice of the prior distribution. However, one should be
aware of the limitations of the model.

138 CHAPTER 8. VALIDATION AND EXPERIMENTAL PLANNING

8.3 Comparing strategies

Talk about paired dataset samples.

When we have two or more strategies to solve a problem, we need
to compare them to see which one is better. This is a common situation
in data science projects, as we usually have many techniques to solve a
problem.

One way to look at this problem is to consider that the algorithm?® A
has hyperparameters A € A. A hyperparameter here is a parameter that
is not learned by the algorithm, but is set by the user. For example, the
number of neighbors in a k-NN algorithm is a hyperparameter. For the
sake of generality, we can consider that the hyperparameters may also
include different learning algorithms or data handling pipelines.

Let us say we have a baseline algorithm A(1,) — for instance, some-
thing that is in production, the result of the last sprint or a well-known
algorithm — and a new candidate algorithm A(1). Suppose p(4,) and
p(A) are the performance vectors of the baseline and the candidate al-
gorithms, respectively, that are calculated using the same strategy de-
scribed in section 8.2. We can validate whether the candidate is better
than the baseline by

P(u>0|z)>y,

where z is now p(1) — p(4,) and y is the confidence level. Also, the
expected performance gain of the candidate algorithm is © — if negative,
the performance loss.

This strategy can be applied iteratively to compare many algorithms.
For example, we can compare A(1,) with A(4,), A(4,) with A(4,), and
so on, keeping the best algorithm found so far as the baseline. In the
cases where the confidence level is not reached, but the expected per-
formance gain is positive, we can consider additional characteristics of
the algorithms, like the interpretability of the model, the computational
cost, or the ease of implementation, to decide which one is better. How-
ever, one should pay attention whether the probability

P(u<0|z)

is too high or not. Always ask yourselfif the risk of the performance loss
is worth in the real-world scenario.

3That includes both data handling and machine learning.

8.4. GROUPING 139

8.3.1 About nesting experiments

Mathematically speaking, there is no difference between assessing the
choice of [¢, 0] and the choice of A. Thus, some techniques — like grid
search — can be used to find the best hyperparameters using a nested
experimental plan.

The idea is the same, we assess how good is the expected choice of
the hyperparameter-optimization technique B to find the appropriate
hyperparameters. Similarly, the choice of the hyperparameters and the
parameters that goes to production is the application of B to the whole
dataset. However, never use the choices of the hyperparameters in the
experimental plan to make decisions about what goes to production.
(The same is true for the parameters [¢, 8] in the traditional case.)

We can unnest the search by interpreting the options as different
algorithms two by two.

8.4 Grouping

TODO Grouped cross validation.

Ethical, privacy and legal issues

It’s a trap!
— Admiral Ackbar, Star Wars Episode VI: Return of the Jedi

A few comments on the ethical, privacy and legal issues that data scien-
tists should be aware of.

141

142

CHAPTER 9. ETHICAL, PRIVACY AND LEGAL ISSUES

Chapter remarks

9.1
M)

9.3

Contents

Ethical and moralvalues
Privacy and data protection
9.2.1 Homomorphicencryption
9.2.2 Federatedlearning
Major legal frameworks
9.3.1 General Data Protection Regulation (GDPR) . . .
9.3.2 California Consumer Privacy Act (CCPA) . . .

Context

Objectives

Takeways

9.1. ETHICAL AND MORAL VALUES 143

9.1 Ethical and moral values
9.2 Privacy and data protection

9.2.1 Homomorphic encryption
9.2.2 Federated learning

9.3 Major legal frameworks

9.3.1 General Data Protection Regulation (GDPR)
9.3.2 California Consumer Privacy Act (CCPA)

Bibliography

Beaumont, P. B. and R. G. Bednarik (2013). In: Rock Art Research 30.1,
pp- 33-54. URL: https://search.informit.org/doi/10.3316/informit.
488018706238392 (cit. on p. 7).

Benavoli, A., G. Corani, J. Dems$ar, and M. Zaffalon (2017). “Time for
a Change: a Tutorial for Comparing Multiple Classifiers Through
Bayesian Analysis”. In: Journal of Machine Learning Research 18.77,
pp. 1-36. URL: http://jmlr.org/papers/v18/16-305.html (cit. on
pp. 136, 137).

Billingsley, P. (1995). Probability and Measure. 3rd ed. John Wiley &
Sons. ISBN: 0-471-00710-2 (cit. on p. 40).

Breiman, L. (1996). “Bagging predictors™. In: Machine Learning 24.2,
pp. 123-140. DOI: 10.1007/BF00058655 (cit. on p. 16).

Cleveland, W. S. (2001). “Data Science: An Action Plan for Expanding
the Technical Areas of the Field of Statistics”™. In: ISI Review. Vol. 69,
pp- 21-26 (cit. on p. 4).

Codd, E. F. (1970). “A Relational Model of Data for Large Shared Data
Banks”. In: Commun. ACM 13.6, pp. 377-387. ISSN: 0001-0782. DOIL:
10.1145/362384.362685 (cit. on p. 9).

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2022). Intro-

duction to Algorithms. 4th ed. The MIT Press, p. 1312. ISBN: 9780262046305

(cit. on pp. 21, 25, 27).

145

https://search.informit.org/doi/10.3316/informit.488018706238392
https://search.informit.org/doi/10.3316/informit.488018706238392
http://jmlr.org/papers/v18/16-305.html
https://doi.org/10.1007/BF00058655
https://doi.org/10.1145/362384.362685

146 BIBLIOGRAPHY

Cortes, C. and V. N. Vapnik (1995). “Support-vector networks”. In: Ma-
chine Learning 20.3, pp. 273-297. DOIL: 10.1007/BF00994018 (cit. on
p- 16).

Cover, T. M. (1965). “Geometrical and Statistical Properties of Systems
of Linear Inequalities with Applications in Pattern Recognition”. In:
IEEE Transactions on Electronic Computers EC-14.3, pp. 326-334.
DOI: 10.1109/PGEC.1965.264137 (cit. on p. 16).

Fagin, R. (1979). “Normal forms and relational database operators”. In:
Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data. SIGMOD °79. Boston, Massachusetts: Associa-
tion for Computing Machinery, pp. 153-160. ISBN: 089791001X. DOTI:
10.1145/582095.582120. URL: https://doi.org/10.1145/582095.
582120 (cit. on p. 54).

Friedman, J. H. (2001). “Greedy function approximation: A gradient boost-
ing machine.” In: The Annals of Statistics 29.5, pp. 1189-1232. DOI:
10.1214/aos/1013203451. URL: https://doi.org/10.1214/aos/
1013203451 (cit. on p. 16).

Grajalez, C. G., E. Magnello, R. Woods, and J. Champkin (2013). “Great
moments in statistics”. In: Significance 10.6, pp. 21-28. DOI: 10.1111/
j-1740-9713.2013.00706.x (cit. on p. 7).

Hillis, W. D. (1985). “The Connection Machine”. Hillis, W.D.: The Con-
nection Machine. PhD thesis, MIT (1985). Cambridge, MA, USA:
Massachusetts Institute of Technology. URL: http://hdl.handle.net/
1721.1/14719 (cit. on p. 11).

Ho, T. K. (1995). “Random decision forests”. In: Proceedings of 3rd Inter-
national Conference on Document Analysis and Recognition. Vol. 1,
278-282 vol.1. DOI: 10.1109/ICDAR.1995.598994 (cit. on p. 16).

Hunt, E. B., J. Marin, and P. J. Stone (1966). Experiments in Induction.
New York, NY, USA: Academic Press (cit. on p. 15).

Ifrah, G. (1998). The Universal History of Numbers, from Prehistory to the
Invention of the Computer. First published in French, 1994. London:
Harvill. 1SBN: 1 86046 324 x (cit. on p. 7).

Kelleher, J. D. and B. Tierney (2018). Data science. The MIT Press (cit. on
pp. xiii, xvi, 6, 46).

Le Cun, Y. (1986). “Learning Process in an Asymmetric Threshold Net-
work”. In: Disordered Systems and Biological Organization. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 233-240. ISBN: 978-3-
642-82657-3 (cit. on p. 15).

Martin, A. F., G. R. Doddington, T. Kamm, M. Ordowski, and M. A.
Przybocki (1997). “The DET curve in assessment of detection task
performance.” In: EUROSPEECH. Ed. by G. Kokkinakis, N. Fako-

https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1145/582095.582120
https://doi.org/10.1145/582095.582120
https://doi.org/10.1145/582095.582120
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1111/j.1740-9713.2013.00706.x
https://doi.org/10.1111/j.1740-9713.2013.00706.x
http://hdl.handle.net/1721.1/14719
http://hdl.handle.net/1721.1/14719
https://doi.org/10.1109/ICDAR.1995.598994

BIBLIOGRAPHY 147

takis, and E. Dermatas. ISCA, pp. 1895-1898. URL: http://dblp.uni-
trier.de/db/conf/interspeech/eurospeech1997.html#MartinDKOP97
(cit. on p. 126).

Naur, P. (1974). Concise Survey of Computer Methods. Lund, Sweden:
Studentlitteratur. ISBN: 91-44-07881-1. URL: http://www.naur.com/
Conc.Surv.html (cit. on p. 3).

Quinlan, J. R. (1986). “Induction of Decision Trees”. In: Machine Learn-
ing 1, pp. 81-106. URL: https://api.semanticscholar.org/CorpusID:
13252401 (cit. on p. 15).

Rosen, K. H. (2018). Discrete Mathematics and Its Applications. 8th ed.
McGraw Hill, p. 1120. ISBN: 9781259676512 (cit. on p. 31).

Ross, S. M. (2014). Introduction to Probability Models. 11th ed. Academic
Press, p. 784. ISBN: 9780124079489 (cit. on p. 34).

— (2018). A First Course in Probability. 10th ed. Pearson, p. 528. ISBN:
978-1292269207 (cit. on p. 34).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning rep-
resentations by back-propagating errors”. In: Nature 323.6088, pp. 533-
536. DOL: 10.1038/323533a0 (cit. on p. 15).

Schapire, R. E. (1990). “The strength of weak learnability”. In: Machine
Learning 5.2, pp. 197-227. DOI: 10.1007/BF00116037 (cit. on p. 16).

Silva, T. C. and L. Zhao (2013). “Detecting and preventing error propaga-
tion via competitive learning”. In: Neural Networks 41. Special Issue
on Autonomous Learning, pp. 70-84. ISSN: 0893-6080. DOI: https:
//doi.org/10.1016/j.neunet.2012.11.001. URL: https://www.
sciencedirect.com/science/article/pii/S0893608012002778 (cit. on
p- 86).

Song, J., H. V. Jagadish, and G. Alter (2021). “SDTA: An Algebra for
Statistical Data Transformation”. In: Proc. of 33rd International Con-
ference on Scientific and Statistical Database Management (SSDBM
2021). Tampa, FL, USA: Association for Computing Machinery, p. 12.
DOI: 10.1145/3468791.3468811 (cit. on p. 109).

Takens, F. (2006). “Detecting strange attractors in turbulence”. In: Dy-
namical Systems and Turbulence, Warwick 1980: proceedings of a sym-
posium held at the University of Warwick 1979/80. Springer, pp. 366—-
381 (cit. on p. 67).

Vapnik, V. N. (1999). The nature of statistical learning theory. 2nd ed.
Springer-Verlag New York, Inc. ISBN: 978-1-4419-3160-3 (cit. on pp. 6,
85, 92).

Vapnik, V. N. and R. Izmailov (2015). “Learning with Intelligent Teacher:
Similarity Control and Knowledge Transfer”. In: Statistical Learn-
ing and Data Sciences. Ed. by A. Gammerman, V. Vovk, and H. Pa-

http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1997.html#MartinDKOP97
http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1997.html#MartinDKOP97
http://www.naur.com/Conc.Surv.html
http://www.naur.com/Conc.Surv.html
https://api.semanticscholar.org/CorpusID:13252401
https://api.semanticscholar.org/CorpusID:13252401
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/BF00116037
https://doi.org/https://doi.org/10.1016/j.neunet.2012.11.001
https://doi.org/https://doi.org/10.1016/j.neunet.2012.11.001
https://www.sciencedirect.com/science/article/pii/S0893608012002778
https://www.sciencedirect.com/science/article/pii/S0893608012002778
https://doi.org/10.1145/3468791.3468811

148 BIBLIOGRAPHY

padopoulos. Cham: Springer International Publishing, pp. 3-32. ISBN:
978-3-319-17091-6 (cit. on p. 17).

Velleman, P. F. and L. Wilkinson (1993). “Nominal, Ordinal, Interval,
and Ratio Typologies are Misleading”. In: The American Statistician
47.1, pp. 65-72. DOI: 10.1080/00031305.1993.10475938 (cit. on p. 50).

Vincent, M. W. (1997). “A corrected 5NF definition for relational database
design”. In: Theoretical Computer Science 185.2. Theoretical Com-
puter Science in Australia and New Zealand, pp. 379-391. 1ISSN: 0304-
3975. DOL: https://doi.org/10.1016/S0304-3975(97)00050-9. URL:
https://www.sciencedirect.com/science/article/pii/S0304397597000509
(cit. on p. 55).

Wickham, H. (2014). “Tidy Data”. In: Journal of Statistical Software 59.10,
pp- 1-23. DOL: 10.18637/js5.v059.110. URL: https://www.jstatsoft.
org/index.php/jss/article/view/v059i10 (cit. on pp. 57, 63).

Wickham, H., M. Cetinkaya-Rundel, and G. Grolemund (2023). R for
Data Science: Import, Tidy, Transform, Visualize, and Model Data.
2nd ed. O’Reilly Media (cit. on pp. xiii, xvi, 45, 63, 101, 108).

Zumel, N. and J. Mount (2019). Practical Data Science with R. 2nd ed.
Manning (cit. on pp. xiii, xvi, 45, 72, 74-77, 85).

https://doi.org/10.1080/00031305.1993.10475938
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00050-9
https://www.sciencedirect.com/science/article/pii/S0304397597000509
https://doi.org/10.18637/jss.v059.i10
https://www.jstatsoft.org/index.php/jss/article/view/v059i10
https://www.jstatsoft.org/index.php/jss/article/view/v059i10

Glossary

BI Business Intelligence 10

BNF Backus-Naur form 3
CDF cumulative distribution function 36

ERM Empirical Risk Minimization 15, 16

ETL Extract, Transform, Load 9
FIFO first-in-first-out 27
HDFS Hadoop Distributed File System 11

IBM International Business Machines Corporation 8

IoT Internet of Things 12

LIFO last-in-first-out 27

LUSI Learning using Statistical Inference 17
PDF probability density function 36

149

150 GLOSSARY

PMF probability mass function 36
RDBMS Relational Database Management System 9

SQL Structured Query Language 9
SVM Support Vector Machine 16

	About this book
	Course plan
	Brief history of data science
	The term ``data science''
	Timeline and historical markers
	Timeline of data handling
	Timeline of data analysis

	Preliminaries
	Algorithms and data structures
	Computational complexity
	Algoritmic paradigms
	Data structures

	Set theory
	Set operations
	Set operations properties
	Relation to Boolean algebra

	Linear algebra
	Operations
	Systems of linear equations
	Eigenvalues and eigenvectors

	Probability
	Axioms of probability and main concepts
	Random variables
	Expectation and moments
	Common probability distributions
	Permutations and combinations

	Fundamental data concepts
	Data science definition
	The data science continuum
	Fundamental data theory
	Phenomena
	Measurements
	Knowledge extraction

	Structured data
	Database normalization
	Tidy data
	Bridging normalization, tidyness, and data theory
	Data semantics and interpretation

	Unstructured data

	Data science project
	CRISP-DM
	ZN approach
	Roles of the ZN approach
	Processes of the ZN approach

	Agile methodology
	SCRUM framework
	Our approach
	The roles of our approach
	The principles of our approach
	Solution search framework

	Statistical learning theory
	Hypothesis and setup
	The learning problem
	A few remarks and definitions

	ERM inductive principle
	Consistency of learning processes
	Definition of consistency
	Nontrivial consistency

	Rate of convergence of learning processes
	Generalization ability of learning processes
	Construction of learning machines
	Data classification methods
	Regression estimation methods

	Learning bias
	Perceptron learning bias
	Multi-layer perceptron learning bias
	Decision tree learning bias
	k-nearest neighbors learning bias

	Data handling
	Data handling operators
	Filtering rows
	Selecting columns
	Mutating columns
	Aggregating rows
	Binding datasets
	Joining datasets
	Pivoting and unpivoting
	An algebra for statistical transformations

	Data handling pipeline
	Data transformation
	Reshaping
	Type conversion
	Normalization
	Sampling
	Dimensionality reduction

	Data cleaning
	Dealing with missing data
	Dealing with invalid and inconsistent information
	Outliers

	Data integration

	Model evaluation
	Binary classification evaluation
	Confusion matrix
	Performance measures

	Regression estimation evaluation
	Probabilistic classification evaluation
	Receiver operating characteristic
	Detection error trade-off

	Other variations

	Validation and experimental planning
	Elements of an experimental plan
	Estimating expected performance
	Cross validation
	Validation methods

	Comparing strategies
	About nesting experiments

	Grouping

	Ethical, privacy and legal issues
	Ethical and moral values
	Privacy and data protection
	Homomorphic encryption
	Federated learning

	Major legal frameworks
	General Data Protection Regulation (GDPR)
	California Consumer Privacy Act (CCPA)

	Bibliography
	Glossary

