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Abstract—Accurately predicting the Remaining Useful Life
(RUL) of critical components is essential for effective predictive
maintenance, as it allows maintenance to be scheduled based
on the actual condition of the equipment rather than arbitrary
timelines, thereby preventing failures and optimizing operational
efficiency. This paper presents a machine learning-based system
for predicting the RUL of Turbofan jet engines, aiming to im-
prove predictive maintenance strategies by using sensor telemetry
data to identify when engines will require attention. Further-
more, exponential degradation, LSTM, and XGBoost models are
compared to determine which one performs best in accurately
capturing degradation trends. The models’ performance was
evaluated using a 10x 10-fold cross-validation, generating 100
metrics per model pair. These metrics were analyzed with a
hierarchical Bayesian approach, utilizing Markov chain Monte
Carlo (MCMC) sampling to estimate the probabilities of one
model outperforming another. The LSTM model consistently
outperformed exponential degradation and XGBoost and was
selected as the most suitable for production due to its superior
performance.

Index Terms—Predictive Maintenance, RUL Prediction, Ma-
chine Learning System

I. INTRODUCTION

Turbines play a key role in several applications, such as
power generation, aerospace, and manufacturing. Over time,
they experience wear and degradation, necessitating careful
maintenance to prevent unexpected failures and costly down-
times. According to [1], degradation is the state in which the
performance capability of equipment is reduced to perform a
required function but continues with acceptable performance.
In the era of Industry 4.0, the industrial sector increasingly
depends on the continuous operation of critical machines to
maintain productivity and ensure safety, making the safety,
efficiency, and reliability of industrial machines an elementary
concern in commercial sectors [2]. To avoid critical damage
and abrupt stops of machine operation, faults in rotating
machines must be detected as early as possible [3].

Traditional maintenance strategies, such as reactive and pre-
ventive maintenance, often yield suboptimal results, including
unexpected failures and unnecessary maintenance activities
[4]. Reactive maintenance, which addresses failures after they
occur, frequently leads to significant operational disruptions.
Preventive maintenance, based on fixed schedules, can result
in unnecessary maintenance actions, thereby increasing oper-
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ational costs without ensuring the avoidance of unexpected
failures. In contrast, predictive maintenance has emerged as
a key strategy for proactively resolving potential failures
[5]. By leveraging historical and real-time data, predictive
maintenance aims to forecast potential failures before they
happen, enabling timely and targeted maintenance actions.

A crucial aspect of predictive maintenance is the accurate
prediction of the Remaining Useful Life (RUL) of critical
components[2]. For the calculation of RUL, it is necessary
to identify the End of Life (EOL) of the equipment, which is
based on the failure threshold [6]. The equation is defined by:

RUL(ty) = teot — tp (1)

Where t.,; is the predicted failure time and ¢, is the current
time of the prediction. Accurate RUL forecasting allows main-
tenance activities to be planned based on actual equipment
conditions rather than arbitrary schedules or reactive measures.
In turbofan engines can effectively avoid serious air disaster
due to engine failure by mining its component degradation
characteristics[4].

In recent years, advancements in machine learning and the
availability of extensive sensor data have transformed RUL
prediction. The continuous collection of high-dimensional,
high-frequency data from sensors enables a rich dataset for
analysis. Machine learning models, especially those designed
for time-series, excel in identifying complex, nonlinear pat-
terns in machinery degradation processes [7]. These models
surpass traditional statistical methods by capturing tempo-
ral dependencies and subtle failure indicators, significantly
improving predictive accuracy. Consequently, the integration
of advanced machine learning with extensive sensor data
has enhanced predictive maintenance systems, providing early
warnings, optimizing maintenance schedules, and reducing
operational costs.

This paper presents a machine learning-based system for
predicting Turbofan Jet Engine RUL, with the aim of im-
proving predictive maintenance strategies. Based on historical
machine data, the system presents RUL predictions informing
which machines need the most urgent attention. The system
processes the data and searches for the best model for the data
set. The proposed approach not only captures the degradation



trend behavior but also presents how to choose the best model
for predicting the RUL.

The primary contributions of this study are as follows:

« Development and evaluation of a data science project for
RUL prediction using historical data from turbine sensors.

o Comparative analysis of various machine learning mod-
els, including mathematical model, ensemble learning
method and Recurrent Neural Network.

o Exploratory data analysis to understand the behavior of
sensor readings up to the moment of machine failure.

o Discussion of the practical implications of the findings
for implementing predictive maintenance in industrial
settings.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the existing literature on RUL prediction and
predictive maintenance. Section 3 explains the experimental
plan for the system, including the data preprocessing, models
development and the search for the best model. Section 4
details the system deployment. Section 5 discuss the results
and compares the performance of different models, while
Section 6 concludes the paper and suggests directions for
future research.

II. LITERATURE REVIEW

In recent years, fault detection algorithms based on neural
networks have significantly improved in their accuracy and
comprehensiveness. According to [8], it is possible to use
a simpler technique for data collection in rotating electrical
machines. The author, using only current data and accelerom-
eter data for vibration capture, was able to diagnose both
electrical and mechanical faults in an induction motor. In
the study by [9], the authors concluded that the use of deep
convolutional neural networks (DCNN) can assist in detecting
datasets from different equipment, thus avoiding poor network
generalization.

Prognostics and Health Management (PHM) methodologies
have been increasingly utilized in power systems. [10] con-
ducted research on capacitor degradation within DC-DC con-
verters. [11] applied monitoring methods combined with fuzzy
logic to diagnose faults in hydraulic generating units. [12] ex-
plored the use of diverse signal processing techniques to mon-
itor bearings and gearboxes in industrial machinery through
PHM strategies. [13] introduced a prognostic framework based
on models to assess the remaining life of gas turbines in
aircraft. [14] used artificial neural networks and support vector
machines (SVM) to forecast the remaining service life in the
railway sector. Adding to this, [15] demonstrated that neural
networks provide effective results in monitoring the health of
various systems.

III. EXPERIMENTAL PLAN

A. Data Collection

The dataset employed for this project is the NASA Turbofan
Jet Engine dataset, which simulates the run-to-failure degrada-
tion of turbofan jet engines. This dataset consists of multiple
multivariate time series, each representing an individual engine

within a fleet of similar engines. Initially, all engines operate
under normal conditions but eventually develop faults. The
experimental plan involved data from 100 engines exhibiting
High Pressure Compressor (HPC) degradation, with operating
durations ranging from 128 to 356 cycles.

The dataset includes engine ID, cycle times, three columns
of operating settings, and 21 sensor readings. A comprehensive
list of sensors is provided in the appendix of this paper. Since
the dataset’s telemetry is simulated up to the point of failure,
the cycles can be used to create a RUL column. Analysis of
sensor readings over the cycles revealed that some sensors
remained constant or lacked significant trends, indicating they
do not influence the RUL and can thus be excluded from the
training process.

B. Models Pipeline

a) Long Short-Term Memory (LSTM): The data extract,
transform and load (ETL) process begins by reading the
train and test sets. Following this, a column for RUL is
created, representing the target variable for prediction. Next,
six columns with constant sensor readings are discarded as
they do not provide useful information for the model. The
operating settings and time cycles are also discarded. The
features are then normalized using the standard scaler, which
transforms the data as follows:
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where x is the input data, p is the mean, and o is the
standard deviation. This normalization ensures that all features
contribute equally to the model training process.

As the LSTM model can capture sufficient historical infor-
mation, an observation window of 5 samples is employed,
meaning the model considers the previous 5 time steps to
make predictions about the RUL. In this way, the dataset is
transformed from one dimension (n,14), with n being the
number of samples and 14 being the number of features, to
(n —4,5,14) for each machine.

The model architecture used consists of two LSTM layers
to capture temporal dependencies in the sensor data, followed
by two dropout layers to prevent overfitting. The training is
performed using the Symmetric Mean Absolute Percentage
Error (sSMAPE) as the loss function. This metric is defined

by:
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where n is the number of observations, g; is the predicted
value, and y; is the actual value. The advantage of this
metric is that it avoids division by zero, treats positive and
negative errors symmetrically, and is particularly useful when
the absolute difference between the predicted and actual values
does not mean the same for values on different scales.

b) Exponential Degradation: Like LSTM, the exponen-
tial degradation model uses the same etl process, however,
after normalization, a Principal Component Analysis (PCA) is
performed, used for dimension reduction and feature fusion.



PCA transforms the 14 features into 3 components, with the
first component being chosen.
The Exponential degradation model can be defined as below

h(t) = ¢ + 0 exp(St) 4)

where h(t) is the health indicator as a function of time, ¢ is
the intercept term considered as a constant, and 6 and 3 are
random parameters determining the slope of the model, where
6 is lognormal-distributed and 3 is Gaussian-distributed.

In the training step the training data is used to obtain the
values of ¢, 6, and 8 for each machine ID. The threshold was
defined as the RUL equal to zero of the elements of the first
PCA.

For the test, the exponential model fit used the mean
parameters of the training data with a lower bound of 25%
and an upper bound of 75%. Then, the total remaining cycles
to reach the failure threshold.

c¢) XGBoost: For the ETL process, a pipeline was created
to handle incoming data by verifying and standardizing col-
umn names, as well as checking for the existence of null fields.
Sensors and information with no variance, detected earlier
in the exploratory phase, are removed from the dataset. The
next step in the pipeline is to normalize the data using the
StandardScaler, as described in Equation 2.

With the data thus processed, an XGBoost regressor was
trained with the following hyperparameters:

o Objective function: squarederror

o Number of estimators: 100

o Learning rate: 0.1

o Maximum depth: 5

« random_state: 42 (to ensure data reproducibility)

C. Model Seach

In the model search, a 10-fold cross-validation with 10
replications using different seeds is employed. This approach
ensures that 10 different combinations of 10 folds are created,
providing 100 different test set predictions.

For each prediction set, a metric adapted from Mean Abso-
lute Error (MAE) is used to measure the error. In this metric,
the MAE is only calculated if the predicted value or the actual
value is equal to or less than 30 cycles. The MAE equation is
defined by:

1o )
MAE = — ; ly: — Gl 5)
Since there are 100 different test set combinations, a vector
with 100 MAE values is saved. For each model, the mean and
the standard deviation of this vector are calculated. To decide
the best model, a Bayesian comparison of each pair of models
is used, providing the probability of practical equivalence and
probability of one model being better than another.

IV. DEPLOYMENT

Once the productive model was selected, a productive
environment was created on Databricks through Azure cloud.
In this environment, two distinct workflows were created:

the first one for model training and the second one for
predicting RUL. The prediction workflow was configured to
automatically trigger every day at a specific time, with alerts
set up for process failures. The training workflow requires
manual triggering according to established model performance
rules.

The architecture ensures robustness at both the hardware
level, supported by the cloud service with backups and elastic
auxiliary clusters as needed, and at the software level, pro-
cesses were modularized to streamline maintenance, enhance
error handling, and enable almost complete automation.

In this environment, both turbine telemetry data and predic-
tion data were saved in separate databases that are versioned
and managed using Hive. From the prediction database, a
Power BI dashboard was connected for automatic updates. In
this dashboard, we can view turbine predictions with a focus
on the most critical ones (lowest RUL). In another tab of the
dashboard, the model’s performance regarding model error in
a hypothetical scenario where a turbine is allowed to fail to
assess the accuracy of predictions made up to that point is
displayed.

The architecture discussed is illustrated in Figure 1.
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Fig. 1: Cloud System Architecture

V. RESULTS AND DISCUSSION

With the model pipelines constructed, the models were
subjected to a 10x 10-fold cross-validation, resulting in 100
metrics for each pipeline. These metrics were summarized in
Table I:

Pipeline Mean Error | Standard Deviation Error
Exponential 20.40 18.92
LSTM 6.56 1.76
XGBoost 6.97 1.46

TABLE I: Summary of 10x 10-cross-validation pipeline errors

The performance of models was evaluated by comparing
error differences between each pair using a 10x 10-fold cross-
validation, yielding 100 metrics per pair. These metrics are
modeled using a hierarchical Bayesian approach to account
for data correlation and variability across datasets. Posterior
distributions are obtained via MCMC sampling, estimating
the probabilities of one model outperforming another. This
methodology was presented by [16]. The model with the



highest probability of superior performance is chosen. An
example comparison between LSTM and XGBoost was shown
in Figure 2. In that example, the LSTM consistently performed
better than XGBoost. Between all the models, the LSTM was
selected as the most suitable for production.
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Fig. 2: Error Distribution LSTM x XGBoost

VI. CONCLUSION

The proposed system demonstrated efficiency in the case
study, reliably ensuring RUL prediction with only a few days
of error. Considering that the user needs a 30-day margin
to adjust the logistics for part replacement, it is feasible to
plan the replacement when the prediction indicates 45 days.
This approach accounts for the slight margin of error in the
modeling, maximizes the usage of the part, and reduces costs.

The system’s architecture also proved to be robust. In terms
of hardware, it is scalable in both processing power and data
storage capacity, with redundancy in place to handle potential
failures. It includes multiple layers of error detection and
alarming to ensure the reliability of the presented data. The
processing is nearly fully automated, requiring minimal human
intervention.

There were some points identified for future improve-
ments. Two key areas, which are interrelated, were enhancing
the modeling and optimizing sensor selection. Reducing the
number of required sensors without compromising prediction
quality has a significant financial impact, as it decreases the
need for sensor maintenance and purchase, and streamlines
telemetry data, thereby improving computational efficiency.
Improvement in modeling could be achieved through better
data handling and testing of different models or the same mod-
els with different hyperparameters. Another crucial aspect was
adding a user feedback channel to the architecture, allowing
the reporting of issues not related to part fatigue, ensuring
these cases do not interfere with the system’s learning process.
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APPENDIX A

List of sensors reading:

o sensor 1: (Fan inlet temperature) (oR),

« sensor 2: (LPC outlet temperature) (cR),
« sensor 3: (HPC outlet temperature) (oR),
o sensor 4: (LPT outlet temperature) (oR),
o sensor 5: (Fan inlet Pressure) (psia),

e sensor 6: (bypass-duct pressure) (psia),

« sensor 7: (HPC outlet pressure) (psia),

« sensor 8: (Physical fan speed) (rpm),

o sensor 9: (Physical core speed) (rpm),

o sensor 10: (Engine pressure ratio(P50/P2),



sensor 11: (HPC outlet Static pressure) (psia),
sensor 12: (Ratio of fuel flow to Ps30) (pps/psia),
sensor 13: (Corrected fan speed) (rpm),

sensor 14: (Corrected core speed) (rpm),

sensor 15: (Bypass Ratio),

sensor 16: (Burner fuel-air ratio),

sensor 17: (Bleed Enthalpy),

sensor 18: (Required fan speed),

sensor 19: (Required fan conversion speed),
sensor 20: (High-pressure turbines Cool air flow),
sensor 21: (Low-pressure turbines Cool air flow)



